
303

© 2011 Anu Books

Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue July 2011, Vol. 1

 NEURO FUZZY LOGIC MODEL
FOR COMPONENT BASED
SOFTWARE ENGINEERING

Harpreet Singh [1], Vishal Kumar Toora [2]

singh.harpreet89@hotmail.com , vishal.alawalpuria@gmail.com

Abstract
Fuzzy logic has proved its mettle in last few decades and has been used in
various applications to improve the performance and embeds some intelligence
into the system. Fuzzy logic also solves the problem of non linear systems and
handles them with great efficiency and provides robustness to the system.
However, our aim always lies in achieving the improved solution and there
are different hybrid algorithms. In this paper, the recent data based artificially
intelligent techniques like Fuzzy have been customized and used .The
application/case study has been taken from a research paper which appeared
in a reputed general. The case study deals with reusability of software
components. The attributes are coupling, volume, complexity, regularity and
reuse frequency. In such data search application the design and developed
Neuro-fuzzy hybrid algorithm has shown its superiority because it includes
the advantages of Fuzzy as well as neural networks. Neuro -fuzzy algorithms
is definitely superior to Fuzzy algorithm as it inherits adaptability and learning.
From the simulation and the result obtained, it has been shown that the
percentage average error is less in Neuro-fuzzy model. Neuro-fuzzy algorithm
has yielded accuracy greater than the accuracy levels as in the case of Fuzzy
logic for software reusability.

Keywords: Fuzzy logic, Neuro-fuzzy, Software reusability

304

© 2011 Anu Books

Harpreet Singh, Vishal Kumar Toora

I. Introduction
Component-based software engineering (CBSE) intends to build large software

systems by integrating pre-built software components. The high productivity is
achieved by using standard components. The principles of CBSE can be best
described by the following two guiding principles: reuse but do not reinvent (the
wheel); assemble pre-built components rather than coding line by line. Software
assets [5], or components, include all software products, from requirements and
proposals, to specifications and designs, to user manuals and test suites. Anything
that is produced from a software development effort can potentially be reused.
That quality of a piece of software, that enables it to be used again, be it partial,
modified or complete is called reusability. The process of reuse consists of four
major activities viz. manage the reuse infrastructure (MRI), produce reusable assets
(PRA), broker reusable assets (BRA) and consume reusable assets (CRA). A few
terms are defined to facilitate our discussion: Producers are those who create
reusable assets with the specific goal of reusability. Function of Manage the Reuse
Infrastructure (MRI) is to establish the reuse rules, roles, and goals in the
infrastructure to support reuse. The Produce Reusable Assets (PRA) activities
develop, generate, or reengineer assets with the specific goal of reusability. PRA
includes domain analysis and domain engineering. The Broker Reusable Assets
(BRA) activity aids the reuse effort by qualifying or certifying, configuring,
maintaining, promoting and brokering reusable assets. The Consume Reusable Assets
(CRA) activity occurs when systems are produced using reusable assets.

In the field of artificial intelligence, neuro-fuzzy refers to hybrids of artificial
neural networks and fuzzy logic. Neuro-fuzzy hybridization results in a hybrid
intelligent system that synergizes these two techniques by combining the human-
like reasoning style of fuzzy systems with the learning and connectionist structure
of neural networks. Neuro-fuzzy hybridization is widely termed as Fuzzy Neural
Network (FNN) or Neuro-Fuzzy System (NFS) in the literature. Neuro-fuzzy system
(the more popular term is used henceforth) incorporates the human-like reasoning
style of fuzzy systems through the use of fuzzy sets and a linguistic model consisting
of a set of IF-THEN fuzzy rules. The main strength of neuro-fuzzy systems is that
they are universal approximators with the ability to solicit interpretable IF-THEN
rules. The strength of neuro-fuzzy systems involves two contradictory requirements
in fuzzy modeling: interpretability verses accuracy. In practice, one of the two
properties prevails. The neuro-fuzzy in fuzzy modeling research field is divided into
two areas: linguistic fuzzy modeling that is focused on interpretability, mainly the

305

© 2011 Anu Books

Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue July 2011, Vol. 1

Mamdani model and precise fuzzy modeling that is focused on accuracy, mainly the
Takagi-Sugeno-Kang (TSK) model. Although generally assumed to be the realization
of a fuzzy system through connectionist networks, this term is also used to describe
some other configurations including, fuzzy logic based tuning of neural network
training parameters, fuzzy logic criteria for increasing a network size representing
fuzzification, fuzzy inference and defuzzification through multi-layers feed-forward
connectionist networks, realising fuzzy membership through clustering algorithms
in unsupervised learning in SOMs and neural networks deriving fuzzy rules from
trained RBF networks. It must be pointed out that interpretability of the Mamdani-
type neuro-fuzzy systems can be lost. To improve the interpretability of neuro-
fuzzy systems, certain measures must be taken.
II. Component based software Engineering

Component based software engineering is the process of implementing or
updating software systems using existing software assets. Software assets, or
components, include all software products, from requirements and proposals, to
specifications and designs, to user manuals and test suites. Anything that is produced
from a software development effort can potentially be reused. That quality of a
piece of software, that enables it to be used again, be it partial, modified or complete
is called reusability. The following steps for implementing Component based software
Engineering process
Step1: Assess organizational readiness: Understand the people, process, product,

technology, asset, economic, metric and management facets of the
organization and how reuse will impact each of these aspects.

Step2: Identify and collect metrics: While this activity is done throughout the reuse
effort as necessary, collecting metrics early will enable us to benchmark
the organization and show the impact when reuse is implemented.

Step3: Identify domains in the organization: Enumerate a list of domains that are
in common within the organization.

Step4: Analyze the domain: An informal domain analysis may be conducted for
the chosen domain. This analysis includes determining features common
to systems in the domain and assessing the range of variability.

Step5: Examine the existing organizational structure: Consider establishing an
independent producer group. This would dedicate resources to ensure that
the necessary assets are created, managed and supported.

306

© 2011 Anu Books

Step6: Create and manage reusable assets: Make, buy or re-engineer existing
assets for users. Bring these assets under a source control and configuration
management system.

Step7: Utilize tools, technology, and standards: Examine whether to create or use
existing tools, technology and standards for your reuse program.

Step8: Conduct reviews and walkthroughs to reinforce reuse: Throughout the
product development life cycles, perform reviews to ensure adherence to
reusability objectives.

In this research paper the considered data table for software reusability is
given in table1, below. Software reusability has shown to be dependent on 5 attributes
viz. coupling, volume, complexity, regularity and reuse frequency.
III. Neuro Fuzzy logic model

The process of fuzzy inference involves all of the pieces that are described in
the previous sections: Membership Functions, Logical Operations, and If-Then Rules.
There are two types of fuzzy inference systems that can be implemented in Fuzzy
Logic Toolbox: Mamdani-type and Sugeno-type. These two types of inference
systems vary somewhat in the way outputs are determined. See the Bibliography
for references to descriptions of these two types of fuzzy inference systems. Fuzzy
inference systems have been successfully applied in fields such as automatic control,
data classification, decision analysis, expert systems, and computer vision. Because
of its multidisciplinary nature, fuzzy inference systems are associated with a number
of names, such as fuzzy-rule-based systems, fuzzy expert systems, fuzzy modeling,
fuzzy associative memory, fuzzy logic controllers, and simply (and ambiguously)
fuzzy systems.

Mamdani’s fuzzy inference method is the most commonly seen fuzzy
methodology. Mamdani’s method was among the first control systems built using
fuzzy set theory. It was proposed in 1975 by Ebrahim Mamdani as an attempt to
control a steam engine and boiler combination by synthesizing a set of linguistic
control rules obtained from experienced human operators. Mamdani’s effort was
based on Lotfi Zadeh’s 1973 paper on fuzzy algorithms for complex systems and
decision processes. Although the inference process described in the next few sections
differs somewhat from the methods described in the original paper, the basic idea is
much the same. Mamdani-type inference, as defined for Fuzzy Logic Toolbox,
expects the output membership functions to be fuzzy sets. After the aggregation
process, there is a fuzzy set for each output variable that needs defuzzification. it is

Harpreet Singh, Vishal Kumar Toora

307

© 2011 Anu Books

Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue July 2011, Vol. 1

possible, and in many cases much more efficient, to use a single spike as the output
membership function rather than a distributed fuzzy set. This type of output is
sometimes known as a singleton output membership function, and it can be thought
of as a pre-defuzzified fuzzy set. It enhances the efficiency of the defuzzification
process because it greatly simplifies the computation required by the more general
Mamdani method, which finds the centroid of a two-dimensional function. Rather
than integrating across the two-dimensional function to find the centroid, you use
the weighted average of a few data points. Figures 1, 2, 3, 4 and 5 show fuzzy sets
taken for each input variable in Mamdani model in this case.

Figure1: Input variable “coupling” fuzzy sets in Mamdani model

Figure2: Input variable “volume” fuzzy sets in Mamdani model

Figure 3: Input variable “complexity” fuzzy sets in Mamdani model

308

© 2011 Anu Books

Figure 4: Input variable “regularity” fuzzy sets in Mamdani model

Figure 5: Input variable “reuse frequency” fuzzy sets in Mamdani model
Figure 6 shows fuzzy sets taken for output variable in Mamdani model in this

case. Figure 7 is

Figure 6: Output variable “software reusability” fuzzy sets in Mamdani model
the snapshot of few sample rules of the rule base for fuzzy model for software
reusability.

Figure 7: Rules in Mamdani model

Harpreet Singh, Vishal Kumar Toora

309

© 2011 Anu Books

Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue July 2011, Vol. 1

Sugeno-type systems support this type of model. In general, Sugeno-type
systems can be used to model any inference system in which the output membership
functions are either linear or constant.A typical rule in a Sugeno fuzzy model has
the form, “If Input 1 = x and Input 2 = y, then Output is z = ax + by +c”. For a zero-
order Sugeno model, the output level z is a constant (a=b =0). The output level zi of
each rule is weighted by the firing strength wi of the rule. For example, for an AND
rule with Input 1 = x and Input 2 = y, the firing strength is
wi = AndMethod (F1(x), F2(y)), where F1,2 (.) are the membership functions for
Inputs 1 and 2. The final output of the system is the weighted average of all rule
outputs, computed as

Figures 8, 9, 10, 11 and 12 show fuzzy sets taken for each input variable in Sugeno
model in this case.

Figure 8: Input variable “coupling” fuzzy sets in Sugeno model

Figure 9: Input variable “volume” fuzzy sets in Sugeno model

310

© 2011 Anu Books

Figure 10: Input variable “complexity” fuzzy sets in Sugeno model

Figure 11: Input variable “regularity” fuzzy sets in Sugeno model

Figure 12: Input variable “reuse frequency” fuzzy sets in Sugeno model
Figure 13 below shows membership function editor for output variable in Sugeno
model in this case.

Harpreet Singh, Vishal Kumar Toora

311

© 2011 Anu Books

Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue July 2011, Vol. 1

Figure 13: Membership function editor for output variable in Sugeno model

Figure 14 below shows neural network providing support to the fuzzy rule base in
Sugeno model. This is the essence of Neuro-fuzzy model. The neural network as
shown below has been trained and tested for the ideal data as shown in table 1 for
software reusability.

Figure 14: ANFIS model structure for Neuro-fuzzy in Sugeno

IV. Simulation and testing
The developed Neuro-fuzzy model for software reusability in Sugeno has been
simulated in MATLAB. It has been tested for various input entries and error has
been calculated in each case. Figure 16 below gives test run of developed Neuro-
fuzzy model for software reusability for one sample case.

312

© 2011 Anu Books

Figure 16: Sample testing of Neuro-fuzzy model (Sugeno model) for software
reusability

V. Results and discussions
Figure 18 below shows surface for the developed Neuro-fuzzy model in Sugeno for
software reusability in this case.

Figure 18: Execution surface in Sugeno model

The table 2 as given below shows fifteen test values for software reusability.
Percentage error has been calculated in each test case to discuss accuracy of
developed Neuro-fuzzy model.

Harpreet Singh, Vishal Kumar Toora

313

© 2011 Anu Books

Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue July 2011, Vol. 1

Table 2: Neuro-fuzzy output

VI. Conclusions
 I this paper a Neuro-fuzzy hybrid algorithm is proposed for the component
classification. In such data search application the design and developed Neuro-
fuzzy model has shown its superiority because it includes the advantages of fuzzy
as well as neural network. On one hand fuzzy provides a robust inferencing
mechanism with no learning and adaptability while on the other hand the neural
algorithms provide learning and adaptability. Neuro -fuzzy algorithm is definitely
superior to fuzzy algorithm as it inherits adaptability and learning. From the simulation
and the result obtained in this paper .it has been shown that the percentage average
error is less in the case of neuro-fuzzy algorithms.

VII. References

[1] Y. F. Chen, M. Y. Nishimoto and C. V. Ramamoorty, “The C Information
Abstraction System,” IEEE Trans. on Software Engineering, Vol. 16, No. 3,
March 1990,pp. 471-483.

[2] Caldiera, Gianluigi and Victor R. Basili, “Identifying and Qualifying Reusable
Software components,” IEEE Software, vol.24, No.2, February 1991, pp-
61-70.

314

© 2011 Anu Books

[3] J. C. Esteva and R. G. Reynolds, “Identifying Reusable Components
using Induction,” International Journal of Software Engineering and
Knowledge Engineering, Vol. 1, No. 3 (1991) 271-292.

[4] S.R. Chidamber and C.F. Kemerer, “Towards a Metrics Suite for
Object Oriented Design,” Proc. Conf. Object Oriented Programming
Systems, Languages, and Applications (OOPSLA’91), vol. 26, no. 11, pp.
197-211, 1991.

[5] G. Boetticher, K. Srinivas and D. Eichmann, “A Neural Net-based Approach
to Software Metrics”, Proc. of the 5th International Conference on Software
Engineering and Knowledge Engineering, San Francisco, CA, 14-18
June 1993, pp 271-274.

[6] S.R. Chidamber and C.F. Kemerer, “A Metric Suite for Object Oriented
Design”, IEEE Trans. on Software Engineering , Vol. 20, pp. 476-493,1994.

 [7] S. V. Kartalopoulos, Understanding Neural Networks and Fuzzy Logic-Basic
Concepts and Applications, IEEE Press, 1996, pp. 153-160.

 [8] H. Ishibuchi, T. Yamamoto, and T. Nakashima, Fuzzy data mining: Effect of
fuzzy discretization, Proc. of 1st IEEE International Conference on Data Mining,
241- 248, 2001.

 [9] T. -P. Hong, C. -S. Kuo, and S. -C. Chi, Trade-off between computation
time and number of rules for fuzzy mining from quantitative data,
International Journal of Uncertainty, Fuzziness and Knowledge- Based
Systems 9, 587-604, 2001.

 [10] Richard W. Selby, “Enabling Reuse-Based Software Development of Large-
Scale Systems”, IEEE Trans. on Software Engineering, Vol. 31, No. 6,
June 2005 pp. 495-510.

Harpreet Singh, Vishal Kumar Toora

