
Haneet Kour

Research Cell: An International Journal of Engineering Sciences, Issue July 2017, Vol. 24,
ISSN: 2229-6913(Print), ISSN: 2320-0332(Online), UGC Approved Journal (S.No.63019)

Web Presence: http://ijoes.vidyapublications.com
© 2017 Vidya Publications. Authors are responsible for any plagiarism issues.

52

Analysis of mitigation techniques to prevent Cross Site Scripting
attack in the web applications

Haneet Kour
Assistant Professor,

Department of Computer Science & Engineering,
MBSCET, Jammu, J&K, India

Email: haneetkour9@gmail.com

 Abstract
The three tier architecture of the web has been developed to help the developers to create flexible
web applications that are accessed by millions of users across the world. These web applications
are developed by using various technologies like HTML, JavaScript, AJAX, XML etc. But the
vulnerabilities at the design level in these technologies result in security compromise for the
users. Thus, the security of these applications is becoming an important issue to ensure the user’s
authentication and privacy. Cross site scripting attack (XSS) is also an exploitation of these
vulnerabilities (existing in the web applications) that result in theft of user’s credentials. This
paper studies the XSS attack and then analyses the various mitigation techniques to prevent XSS
attacks.

Keywords— Cross Site Scripting, Cookie, Web Vulnerability, Mitigation.

INTRODUCTION
Cross Site Scripting (XSS) attack is emerging as one of the top web based security problems
resulting in compromise of user’s authentication and privacy. XSS refers to the script injection
performed to exploit the vulnerabilities (existing at the design level in the web applications) by
injecting html tag / JavaScript functions into the web page so that it gets executed on the victim’s
browser to access to any sensitive victim’s credentials (e.g. cookies, session IDs, etc.) when one
visits the web page. By exploiting XSS vulnerabilities in the script, the attacker steals the user’s
sensitive information and invoking malicious acts on the user’s behalf. The attacker generally
targets the organizations that hold large online communities of users (i.e. social networking sites,
blogs and online news sites) or the organizations that rely on web technology to generate revenue
(i.e. providers of online services, services that store personal or financial information such as
online payment, banking services, etc.) [1]. The following server side pseudo code is used to
display the comments posted by the users into the blogs.

Haneet Kour

Research Cell: An International Journal of Engineering Sciences, Issue July 2017, Vol. 24,
ISSN: 2229-6913(Print), ISSN: 2320-0332(Online), UGC Approved Journal (S.No.63019)

Web Presence: http://ijoes.vidyapublications.com
© 2017 Vidya Publications. Authors are responsible for any plagiarism issues.

53

 This code gets stored into the backend database of the website and it will be executed every time
on surfing this web page. But this code is vulnerable to XSS attack as it provides a way to the
attacker to insert the malicious script (<script> --steal user credentials-- </script>) and then
response generated by the server is: “<html><body> The posted comment is: <script>…
</script></body></html>” and the malicious script gets executed in the victim’s browser
leading to theft of victim’s credentials. The overview of XSS attack is presented in Fig. 1.

Fig. 1. The overview of XSS attack

 This architecture represents three main actors involved in XSS attack - Attacker Domain, Victim
Domain and the Vulnerable Web Application. Firstly, the attacker traces out the vulnerabilities

Haneet Kour

Research Cell: An International Journal of Engineering Sciences, Issue July 2017, Vol. 24,
ISSN: 2229-6913(Print), ISSN: 2320-0332(Online), UGC Approved Journal (S.No.63019)

Web Presence: http://ijoes.vidyapublications.com
© 2017 Vidya Publications. Authors are responsible for any plagiarism issues.

54

in the website that can be exploited by the JavaScript functions or attributes in html tags. Then,
he injects malicious script into the web application by logging into the website or crafting
malicious link and luring the victim to follow this link. Now, the victim logins into this
vulnerable web application by submitting the Id and password. After authentication, the web
server of the application would generate and transfer the cookie of that particular session to the
victim’s browser. The victim browser executes the malicious JavaScript code along with
legitimate script of the web page leading to redirection of the victim’s cookies to the attacker
domain [2].

A. Types of XSS attack
The target of the attacker to steal user credentials (Cookies, Session Ids etc.) by carrying out
script injection in the vulnerable web application where the victim visits. The attacker performs
XSS attacks by following ways:

1) Stored XSS Attack: The Stored XSS attack is executed when the malicious code submitted by
the attacker is saved by the server in the web application repository, and is run in the web page
accessed by the victim’s browser. The attacker posts the malicious script along with the
hyperlink to it into the blogs, comments, message boards, social sites etc. which will be invoked
later on by the other users while surfing that particular web page. A persistent XSS attack against
Hotmail occurred on October 2001. In this attack, the remote attacker was allowed to steal .NET
Passport identifiers of Hotmail’s users by stealing their associated browser’s cookies [3]. A
persistent XSS attack against MySpace occurred on October 2005 and resulted in propagation of
the worm Samy (that spread exponentially) across MySpace’s user profiles [4].

2) Reflected XSS Attack: Reflected XSS attack is executed in websites when data submitted by
the client is immediately processed by the server to generate the results that are then sent back to
the browser on the client system. These vulnerabilities are generally found in search engines that
return the input along with search results. The attacker uses standard means to deliver malicious
XSS exploited URL to victim through e-mail, instant messenger applications, or search engines.
Some reflected XSS vulnerabilities were also traced out in the Google’s web search engine on
November 2005 and July 2006 [5] [6]. These vulnerabilities got fixed up in a reasonable short
time.

AIMS AND OBJECTIVES
The objective of this paper is to study the XSS attack and to analyze the mitigation techniques to
protect the web applications from cross site scripting vulnerabilities.

RELATED WORK

Haneet Kour

Research Cell: An International Journal of Engineering Sciences, Issue July 2017, Vol. 24,
ISSN: 2229-6913(Print), ISSN: 2320-0332(Online), UGC Approved Journal (S.No.63019)

Web Presence: http://ijoes.vidyapublications.com
© 2017 Vidya Publications. Authors are responsible for any plagiarism issues.

55

A lot of research has been done on script injection based web attacks in recent years and many
researchers are continuing their study in this domain and various researchers have introduced
different defensive techniques to prevent XSS vulnerabilities. These defense mechanisms are
implemented either at the client side or the server side and some solutions integrate client and
server approach. Some of these techniques are discussed as follows
David Scott and Richard Sharp [7] presented an application level firewall that needs correct
identification and validation policies for each individual entry point to a web application to
protect it by specifying what legal HTTP and HTML requests are. This approach suffers from
high server response time.
O. Ismail et al. [8] devised an approach based on proxy mechanism that inspects the exchanged
data between browser and web application’s server to trace out the malicious requests that are
reflected from the attacker to the victim domain. If request is found to be malicious, then
characters contained within the request are encoded by the proxy, trying to avoid the success of
the attack. This approach can detect reflected XSS attack.
Trevor Jim et al. [9] presented a mitigation technique known as BEEP (browser enforced
embedded policies) against XSS that is implemented on the server side. In this approach, a
website can embed a policy in its pages to specify which scripts are allowed to run. The browser,
which knows exactly when it will run a script, can enforce this policy perfectly.
Gary Wassermann and Zhendong Su [10] devised an approach that detects Cross-Site Scripting
Vulnerabilities statically for inspecting weak or missing input validation by combining the work
on infected information flow with string analysis.
Yi Wang and et al. [11] introduced a static Stored XSS detection algorithm integrated with
program slicing method to create the slices of web application that consists of threat injection
and threat release, linked to possible Stored XSS for manual checking or other dynamic
investigation.
Shashank Gupta and B. B. Gupta [12] presented a security model called Browser Dependent XSS
Sanitizer on the client-side web browser for mitigating the effect of XSS vulnerability. The
authors used a three-step approach to eliminate the XSS attack without degrading much of the
user’s web browsing experience on various modern browsers.

EXPERIMENAL SETUP
In order to achieve the objectives of the study, a website in PHP was developed to study XSS
attacks and this website was hosted on the local host (XAMPP server -
http://localhost/website/main.php). The attacker domain (http://attacker.com) was also
implemented on the virtual host in XAMPP server. Firstly no defense approach against XSS
vulnerabilities was implemented in the website. The attacker attempted to execute the following
JavaScript code on the victim’s browser to carry out XSS.

window.location="http://attacker.com?cookie="+document.cookie

Haneet Kour

Research Cell: An International Journal of Engineering Sciences, Issue July 2017, Vol. 24,
ISSN: 2229-6913(Print), ISSN: 2320-0332(Online), UGC Approved Journal (S.No.63019)

Web Presence: http://ijoes.vidyapublications.com
© 2017 Vidya Publications. Authors are responsible for any plagiarism issues.

56

The execution of the above script resulted in redirection of the victim’s cookie to the attacker
domain.

Fig. 2. Home page of the attacker in the vulnerable website where he injects malicious script

Fig. 3. Malicious script stored into web repository to carry out XSS attack

Haneet Kour

Research Cell: An International Journal of Engineering Sciences, Issue July 2017, Vol. 24,
ISSN: 2229-6913(Print), ISSN: 2320-0332(Online), UGC Approved Journal (S.No.63019)

Web Presence: http://ijoes.vidyapublications.com
© 2017 Vidya Publications. Authors are responsible for any plagiarism issues.

57

Fig. 4. Victim logins into his home page

Fig. 5. Malicious script gets executed and victim is redirected to attacker domain

Fig. 6. Victim’s cookies stolen by the attacker

A. Preventing XSS attack
The main reason behind the XSS attack is the misinterpretation of the user input as a code rather
than the data by the DOM. During the parsing of any web page in the browser, DOM parses the
injected malicious script together with the intended script of the web page, thus resulting in script
execution. Therefore, secure input handling is needed to interpret this input as data. In our study,
following mitigation techniques were applied in the web application to prevent XSS
Vulnerabilities:

1) Enoding: In this mitigation approach, the user input is first encoded and then it gets stored into
the web repository. This approach mitigates XSS by escaping user input so that the browser
interprets it only as data, not as code. It transforms special characters like < and > into < and

Haneet Kour

Research Cell: An International Journal of Engineering Sciences, Issue July 2017, Vol. 24,
ISSN: 2229-6913(Print), ISSN: 2320-0332(Online), UGC Approved Journal (S.No.63019)

Web Presence: http://ijoes.vidyapublications.com
© 2017 Vidya Publications. Authors are responsible for any plagiarism issues.

58

> respectively. Thus, the script does not get executed. In our study, htmlentities(“user-input‟,
flag) function in php is used to implement encoding technique. This approach is implemented on
the server side.

2) Filtering: In this approach, the user input is filtered to check whether it contains html tag or
not. If it contains, then all the html tags will be removed from the input, only contents inside
these tags will get stored into the backend database. In our study, it is implemented by using the
function filter_var(“user-input”, FILTER_SANITIZE_STRING) in php to prevent the insertion of
malicious code into the database of web application, thus mitigating XSS attack. It is also
implemented on the server side.

3) Blacklisting: In this approach, the pattern for the possible malicious script (to carry out XSS)
has been predefined. When the user enters the input, then it is matched with all predefined
forbidden pattern to check whether input is valid or not. If input gets matched, then input will be
blocked or sanitized to mitigate XSS vulnerabilities. In our study, preg_match(“predefined
forbidden pattern”, “user-input”) function is used to trace out black listed input.

4) Whitelisting: It is the opposite of the blacklisting approach. In this approach, the pattern for
the possible safe input has been predefined. When the user enters the input, then it is matched
with all predefined allowed pattern to check whether input is valid or not. If input gets matched,
then input will be passed to the backend database of the website without any transformation. In
our study, preg_match(“predefined allowed pattern”, “user-input”) function is used to trace out
white listed input.
5) Sandbox: In this approach, a sandbox environment is created on the web browser from where
the victim surfs the web page. Even if the attacker becomes successful in executing malicious
script in the victim’s browser, but the user credentials (authentication details, cookies etc.) will
not be redirected to the attacker domain as the sandbox does not authorize the leakage of any
information out of this protected environment. In our study, sandbox environment is created on
IE web browser by using Content Security Policy as: header("X-Content-Security-Policy:
sandbox allow-forms allow-scripts allow-modals "); it means the script gets executed but user’s
authentication details will not be redirected to the attacker domain , thus bypassing XSS attack.

RESULT AND ANALYSIS
By performing the above experiments on the vulnerable website hosted on the local host, it has
been found in these experiments that the attack was performed successfully by injecting
malicious JavaScript in various ways. Then mitigation techniques were deployed to prevent XSS
and these techniques successfully prevent XSS attack. These approaches are evaluated for their
merits and demerits which are as under:

Haneet Kour

Research Cell: An International Journal of Engineering Sciences, Issue July 2017, Vol. 24,
ISSN: 2229-6913(Print), ISSN: 2320-0332(Online), UGC Approved Journal (S.No.63019)

Web Presence: http://ijoes.vidyapublications.com
© 2017 Vidya Publications. Authors are responsible for any plagiarism issues.

59

Merits:
• These mitigation techniques successfully mitigate XSS attack risks.
• These techniques have no effect on the performance of the client’s web browser.
• These techniques are compatible with modern browsers.

Demerits:

• By adopting encoding and filtering, users are not allowed to post their inputs in html
format. They can post input only in data format.

• Although, blacklisting allows valid html input to get posted but the developers have to
predefine the forbidden pattern for the malicious code. It causes overburden on the
developer’s side. Similar is the case with whitelisting approach.

• If the attacker inserts the malicious code that is not in the list of predefined forbidden
expressions, then this code can get bypassed and it gets executed on the victim’s browser.

• If any user inserts valid input but that is not in the list of predefined allowed expressions,
then this valid input gets blocked by whitelisting approach.

• With sandboxing, the attack gets prevented, but the website can’t interact with outer
world.

The overall analysis of these mitigation techniques to prevent XSS attack is summarized in table
1.

TABLE I. ANALYSIS OF MITIGATION TECHNIQUES AGAINST XSS

CONCLUSION

Haneet Kour

Research Cell: An International Journal of Engineering Sciences, Issue July 2017, Vol. 24,
ISSN: 2229-6913(Print), ISSN: 2320-0332(Online), UGC Approved Journal (S.No.63019)

Web Presence: http://ijoes.vidyapublications.com
© 2017 Vidya Publications. Authors are responsible for any plagiarism issues.

60

XSS attack is emerging as a serious threat to the web application and its users. Various
researchers have put their efforts to trace out and exploit the vulnerabilities of Cross Site
Scripting attack in the web applications and on the basis of the result; they have proposed various
types of prevention and protection mechanisms. They have proposed many new approaches or
certain adjustments but a complete protection is still far off. Hackers are still able to exploit the
vulnerabilities to carry out XSS in different ways. When a vulnerability is blocked, the attacker
traces out another mechanism to exploit it. This requires a continuous watch over the new
coming up technologies and test for the vulnerabilities. Also, the developers of these applications
should adopt an efficient approach on the server side as well as client side to protect the users of
the web application.

REFERENCES
[1] Joaquin G.A. and Guillermo N.A., “Prevention of cross-site scripting attacks on current web
applications”, OTM 2007, Lect. Notes Computer Science, vol. 4804, 2007, pp. 1770–1784.
[2] Haneet Kour and Lalit Sen Sharma, “Tracing Out Cross Site Scripting Vulnerabilities in
Modern Scripts”, International Journal of Advanced Networking and Applications (IJANA),
ISSN: 0975-0290 (Online) Volume 7 Issue 5, 2016, pp. 2862-2867.
[3] Zero. Historic Lessons From Marc Slemko – Exploit number 3: Steal hotmail account.
http://0x000000.com /index.php? i=270 &bin=100001110.
[4] Wade Alcorn, “XSS viruses: Cross-site scripting viruses and worms–a new attack vector”,
Journal of Network Security, Elsevier, ISSN 1353-4858 Volume 2006 Issue 7, July 2006 pp 7-8.
[5] Y. Amit, “XSS vulnerabilities in Google.com”, November 2005. [Internet]. Available:
http://www.watchfire.com/securityzone/ advisories/12-21-05.aspx.
[6] R. Hansen, “Cross Site Scripting Vulnerability in Google”, July 2006. [Internet]:
http://hackers.org/blog/20060704/cross-site-scripting-vulnerability-in-google/.
[7] David Scott and Richard Sharp. “Abstracting application-level web security”, in WWW '02:
Proceedings of the 11th international conference on World Wide Web, ACM, New York, USA,
2002, pp. 396-407.
[8] O. Ismail, M. Etoh, Y. Kadobayashi, and S. Yamaguchi, “A Proposal and Implementation of
Automatic Detection/Collection System for Cross-Site Scripting Vulnerability”, 18th Int. Conf.
on
Advanced Information Networking and Applications 2004, pp. 145-151.
[9] Trevor Jim, Nikhil Swamy and Micheal Hicks, "Defeating Script Injection Attacks with
Browser Enforced Embedded Policies", Proc. 16th International Conference on WWW ACM
2007, pp.601-610
[10] Gary Wassermann, Zhendong Su, “Static Detection of Cross-Site Scripting Vulnerabilities”,
ICSE ‟08: Proceedings of the 30th international conference on Software engineering, 2008, pp.
171-180.

Haneet Kour

Research Cell: An International Journal of Engineering Sciences, Issue July 2017, Vol. 24,
ISSN: 2229-6913(Print), ISSN: 2320-0332(Online), UGC Approved Journal (S.No.63019)

Web Presence: http://ijoes.vidyapublications.com
© 2017 Vidya Publications. Authors are responsible for any plagiarism issues.

61

[11] Yi Wang, Zhoujun Li, Tao Guo, “Program Slicing Stored XSS Bugs in Web Application”,
Fifth International Symposium on Theoretical Aspects of Software Engineering, IEEE, 2011, pp.
191-194.
[12] Shashank Gupta and B.B. Gupta, “BDS: Browser Dependent XSS Sanitizer”, IGI-Global,
Handbook of Research, Nonvember 2014, pp. 174-191.

