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Abstract.  It has been noticed that the functions analytic on the finite disc having same 

order but infinite type, the concept of the type does not give the precise information about 

their growth. To overcome this problem the con
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been introduced. These parameters are known as generalized growth parameters. 

paper, we shall study the generalized growth parameters of a function analytic in finite 

disc �� with respect to a proximate order 

the Taylor series expansion of 
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1. Introduction.  Several authors (see [1

analytic on the disk in terms of coefficients occurring in its Taylor series expansion and 

polynomial approximation errors. 

increasing function of r for 0���� for � 	 �
, such that  

                                       � � 

To prove our main results, we need the following lemma.

Lemma 1.1.  For the function 
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It has been noticed that the functions analytic on the finite disc having same 

order but infinite type, the concept of the type does not give the precise information about 

their growth. To overcome this problem the concept of type with respect to 

has been defined which is known as generalized type. Similarly, generalized 

been introduced. These parameters are known as generalized growth parameters. 

generalized growth parameters of a function analytic in finite 

with respect to a proximate order �����, in terms of the coefficients 

the Taylor series expansion of f.  

Proximate Order,  generalized growth, Taylor series.

Several authors (see [1-7]) studied the growth parameters of functions 

analytic on the disk in terms of coefficients occurring in its Taylor series expansion and 

polynomial approximation errors. It is known that ��� �� � ��� ������
 is a monotonically 

0 � �
 � � � �, therefore, we define a single valued function 


 ��� � ��������� ⇔  
 ��� � �� � ����.                
we need the following lemma. 

For the function ���� defined above the following relations hold
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It has been noticed that the functions analytic on the finite disc having same 

order but infinite type, the concept of the type does not give the precise information about 

cept of type with respect to proximate order 

has been defined which is known as generalized type. Similarly, generalized lower type has 

been introduced. These parameters are known as generalized growth parameters. In this 

generalized growth parameters of a function analytic in finite 

in terms of the coefficients �  occurring in 

, Taylor series. 

studied the growth parameters of functions 

analytic on the disk in terms of coefficients occurring in its Taylor series expansion and 

� �
is a monotonically 

, therefore, we define a single valued function 

                    �1.1� 

defined above the following relations hold 
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and for 0 � " � ∞ 

Proof. Using the definition of pro

$%log$%log

Now for a given ) 	 0 �*$ �
+ 
 1� , 1 � )�  $%-.

/
0�  
 1� , 1

0�
                                       0�     lim� →
2. Main Results 

Now we will prove the following theorems:

Theorem 2.1.  Let f(z) =∑5 6

Then the type 7�∗of f with respect to the proximate order 
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lim � → ∞ 9$%log ����:$%log �: ; � 1� , 1 

lim � → ∞ 9��<������ ; � < =>?= 

Using the definition of proximate order and relation (1.1), we have  

log ����:log �: � 1� , ��/ ��� �� � �� A0B ��C�� � 

⇔  $%log ����:$%log �: � 1� , 1 

	 �
 we obtain  

� %log �: � +  $%log ����:-.
/ � + 
 1� , 1 , )�-.

/

 1 � )� log < � log ��<������ � 
 1� , 1 , )� log <

0�       <� =>?=CD� � ��<������ � <� =>?=�D�
 

lim → ∞ 9��<������ ; � < =>?= . 

Now we will prove the following theorems: 

E*F ,
 analytic in�� , having order � and proximate order

with respect to the proximate order �����, is given by 
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�  $%log �: 
� < 

and proximate order�����. 

is given by  
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                                7�∗G � lim HIJ* → ∞
where 

                              G � ���� , 1�
Proof. For all r sufficiently close to R and for every 

We obtain  

log
Now by using Cauchy’s inequality, we get

                   A0B�|E |
The right hand side of (2.2) is estimated at 

Then L��� → � �H * → ∞. Putting

In view of (2.2), for all sufficiently large n

A0B�|E |� �
⇒ ��*�A0B�|E *
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HIJ∞ N��*�A0B�|E |� * O���                                     

���� . 
For all r sufficiently close to R and for every ) 	 0, using the relation 

7�∗ � lim HIJ� → � log G��, P�
��� �� � ��� ������ 

log G��, P� � �7�∗ , )� 
 ��� � �������
 

Now by using Cauchy’s inequality, we get 

| � �7�∗ , )� 
 ��� � ������� � *A0B�                  
) is estimated at  


 ��� � ������� �  *��7�∗ , )�. 
Putting 

Q�*� � �� , � L�*� 

), for all sufficiently large n, we get 

� �7�∗ , )�R� �*��CR� ��1 � Q�*� � * log L�*� , * log
 |� � �7�∗ , )�R� ���*����CR� ��*R� � S1 � �*R� � log �T�

��7�∗ , )�R�
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       �2.1� 

using the relation  

       �2.2� 

log � 

� � �� �
� � V 
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Since     

                lim * → ∞ ��*�*R� � → 1
and  

                              ����� → � �*$
(2.2) gives that 

                                 7�∗G W lim HIJ* → ∞
In order to prove the reverse inequality, let 

lim*
Thenfor all r sufficiently close to R and for every 

|E |
In view of (1.1) and Lemma 1.1, we obtain

|E 

Thus, the maximum term X���
log X

The right hand side is estimated at
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1, lim * → ∞ S*R� � log �T� �� ���7�∗ , )�R� � V →  �1          

�*$ � → �, 

HIJ∞ N��*�A0B�|E |� * O���                                    
In order to prove the reverse inequality, let Ybe defined by the equation  

lim HIJ* → ∞ N��*�A0B�|E |� * O��� �  YG. 
nfor all r sufficiently close to R and for every Z 	 Y , 

|� � exp ^*�1 , ��Z ==?>
�� >=?>� , * log ��_ . 

) and Lemma 1.1, we obtain 

|� � exp ^*�1 , ��� � �  ̀ �� � * 
� � ��� �_ . 
� of f for |F| � � satisfies  

X��� � max* W 0 ^*�1 , ��� � �  ̀ �� � * 
� � ��� �_. 
The right hand side is estimated at 
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                 �2.3�    

                  �2.4� 
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It gives 

Now applying the limit as � →

Since Z 	 Y, we have  

                   
On combining (2.4) and (2.5) the required result is immediate.

Theorem 2.2. Let f(z) =∑
proximate order ����� be such that 

* 	 *
. Then the lower type �
��G

Proof. Since d�*� forms a non decreasing function of n, it can be seen that d�*� for infinitely many values of n and d�*�, the maximum term X��
given by 

Let 0 � ��∗ � ∞. Using the relation
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* � NZ� 
 ��� � ���������O 

log X���
� ���C������� � Z 

→ �, we get 

7�∗ e  Z 

          7�∗ e  Y.                                               �2.5� 

) the required result is immediate. 

∑ E*F ,5 6
 analytic in�� , having order � 
be such that d�*� � ghij=hi g forms a non decreasing function of n for 

��∗ of  f, with respect to the proximate order ��
�∗G � lim k*P* → ∞ N��*�A0B�|E |� * O���

 

forms a non decreasing function of n, it can be seen that 

for infinitely many values of n and � 	 0, d�*� → 1 �H * → ∞, where �� and the central index l���of f, for d�*� e
X��� � |E |� �*$ l��� � *. 

Using the relation 

��∗ � lim k*P� → � log G��, P�
��� �� � ��� ������ 
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 �0 � � � ∞� and 

forms a non decreasing function of n for 

���� is given by  

forms a non decreasing function of n, it can be seen that d�* , 1� 	
where d�* , 1� 	� e � e d�* , 1�, are 
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For given ) 	 0 and for all r sufficiently close to 

If E =F =  �*$ E mF m are consecutive maximum terms of 

d�*� , 1� � d�*� , 2� � ⋯
d�* , 1�. 
Therefore, 

A0B�|E | , * log
Since � log �� W �o � ��  P0� �

��*�A0B�|E |� * 	 ���∗ � )��*
Suppose that  

*�
The maximum value of the function 

sufficiently large, 



Using the definition of ����, we obtain



For sufficiently large value of n, we get
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sufficiently close to R, we get 

log X��� 	 ���∗ � )� 
 ��� � �������
 

consecutive maximum terms of f, and *� e
⋯ … … … … … � d�*q� �*$|E |� � rE =r� =

log � d�* , 1� 	 ���∗ � )� 9� � d�* , 1��d�* , 1� ;C�s

� 	 0, we have 

���*� 9� � d�* , 1��d�* , 1� ;C�s� ��� � *���∗ � )� 9� ��d

��� � 
� � ��� �C��o� , *���∗ � )� 
� � ��� � 

maximum value of the function n(x) occurs at a point �� � ���*� 


� � ��� �C��o�C� � *���∗ � )��� , 0�1�� 

, we obtain 


� � ��� �C� � � N *���∗ � )��� , 0�1��O. 
sufficiently large value of n, we get 
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e * e *q � 1, then 

r =P0� �� �

; s� ���
 

� d�* , 1�d�* , 1� ; �2.6� 

 given by, for n 
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inf0 � � � � *��� � ^ *���∗ � )
� *���∗ � )� � N

In view of (2.6) and Lemma 1.1, we get

                lim k*P* → ∞ N��*�A0B
Inequality (2.7) obviously holds if 

To prove the equality in (2.7) we shall prove that strict 

then there exists a number w 	 �
lim k*P* → ∞

Let w� be such that w 	 w� 	 �
A0B

For all r, sufficiently close to R and sufficiently large

A0B�G
                

Assume that * � xw�ρ ��C��� �C

log G
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)� z� , 0�1�{� x *���∗ � )��� , 0�1��| , ���∗ � )�
� N *���∗ � )��� , 0�1�� z1 , � , 0�1�{z� , 0�1�{ O.                    

) and Lemma 1.1, we get 

� �A0B�|E |� * O��� W �� , 1������ ��∗                          
) obviously holds if ��∗ � 0. 

) we shall prove that strict inequality cannot hold in (2.7��∗ , such that  

k*P∞ N��*�A0B�|E |� * O��� � �� , 1������ w. 
��∗ . Then, for all n sufficiently large 

A0B�|E |� 	 *��*� �1 , ��
� >�=?>� w� =�=?>�. 

sufficiently close to R and sufficiently large 

G��, P� 	 *��*� �1 , ��
� >�=?>� w� =�=?>� , * log �� 

     � *��*� �1 , ��
� >�=?>� w� =�=?>� � * log 
� � �� � . 

�C���}�C�|, then, in view of definition of ��*�, we get

G��, P� 	 *�� �  ~=�� � w� 
 ��� � �����}�
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*�� � *���∗ �)���,0�1���_ 

       

                 �2.7�  

inequality cannot hold in (2.7). For, if it holds, 

�
, we get 
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so that ��∗ W w�, which is a contradiction. Hence the proof is completed.
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