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1.1  ABSTRACT—In this article we are presenting machine learning mechanism through 

Support Vector Machine (SVM).  Through SVM the automatic learning task on various 

types of learners will analyze. SVM is another technique in machine learning and it’s 

also helpful for analysis of learner’s knowledge level. SVM aims at facilitating searching 

and organizing learning objects. During an evaluation period, the SVM models are used 

for the classification of different learning objects according to the different parameters 

of SVM like correct rate, support vectors, sensitivity, specificity, positive predictive 

value, negative predictive value, positive likelihood value, negative likelihood value and 

prevalence. Through the parameters SVM models can also analyze learner’s knowledge 

level category and Adaptive Web Based E-Learning System [39] can perform 

accordingly. 

Keywords— Adaptive Web Based E-Learning System (AWBES), SVM; 

1.2  INTRODUCTION  

In a machine learning method, SVM is a one of the important system for data analyzing 
and pattern recognition [MathWorks]. In AWBES Course Organization and Implementation 
Section were taught into adaptive environment. Like Artificial neural network (ANN), the 
SVM is a fruitful machine learning technique. The adaptation method normally used to 
training and testing the learning objects. Each module in the training set consist one target and 
two input values. This target is according to the pedagogical rules as described in AWBES. 
For each input, every category read again, forward but read again and forward act for a 
different SVM model. We compare all three categories’ SVM models and analyses the 
learners performance.   The main object of SVM is to give a statistical vales for analyze 
learners knowledge level those are given from the training data set. The thrust area of machine 
learning is the data categorizations and to create a hyperplane between classes. To obtain the 
best result for categorization and mapping from the machine learning, generate a largest 
distance in between support vectors and from the hyper plane [Kan Xie ]. 

1.3 SVM – INSTRUCTOR 

In AWBES each lesson is divided into several modules and each module is sub divided into 

two sections. Each section composed through several LO. Each module score used for build a 

linear SVM using Matlab as an input and the target table. Through the performance 

parameters [Table 1.1] AWBES is able to analyze learner’s actions in each module. Positive 

samples are those which are according to the table 1 for each category and Negative samples 

are those which are not according to the table 1.Threshold value for all classes is as follows: 

Table 1 : Learner’s threshold value for different classes 
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Class Threshold Value 

Read Again Less than 60% 

Forward but Read Again 60% - 79% 

Forward  80% and above 

 During the validation of classifiers ‘Classperf’ provides an interface to keep track of the 

performance. A classifier performance object optionally updates by ‘Classperfcreates’ 

[MathWorks]. The performance properties perform Classifier’s performance (CP) with 

various parameters like sensitivity, specificity, prevalence, correct rate and many others. 

SVMStruct performs the structured information for SVM classifier like support vectors, bias 

and many others. Support vectors are the most difficult to classify data points that lie closest 

to the hyperplane and direct bearing on the optimum location of the hyperplane. From the 

svmtrain function it can be shown the optimal hyperplane. So that it can be train an SVM 

classifier by using a linear kernel function and plot the grouped data. The following graph 

shows how the support vectors and hyperplane are made: 

 

 

Fig. 1.1 : Support vectors for a Learner 
 

The basic idea is to find a hyperplane which separates the dimensional data perfectly into its 

two classes, intuitively the hyperplane that maximizes the geometric distance to the closest 

data points.  Through SVM model for analysis of learner’s knowledge we should compare all 

three SVM models generated by Read Again, Forward but Read Again and Forward class. 
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The below given table 1.1 represents the parameters of SVM. The parameters should contain 

the following ideal values for every category. The category which has the maximum ideal 

values needs to be selected. Accordingly, learners are directed as to whether they need to go 

for read again, forward but read again and forward. 

 

Table 1.1: Ideal values of SVM parameters (NaN- No Number) 
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1 Note  1 1 1 1 NaN 0 1 

Note: That category should be preferred whose value is comparatively less. Since, Support 

vectors are proportional to complexity. 

 

Below there are various learners which belong to different category. AWBES has shown the 

results of each learner in their learning objects. The scores of various learners are to be 

inserted in the SVM as input. According to the pedagogical rule, the learners’ LO are 

segregated in the class (Read Again, Forward but Read Again and Forward). Every class has 

been set as target for all the learners in the SVM model. The input i.e. score of each LO is 

inserted in the SVM model with each class as target respectively. Thus, three SVM models 

are generated and its parameters are compared and accordingly the learners’ knowledge 

levels are analyzed.  

1.4   CORRECTLY CLASSIFIED LEARNERS 

The following learners’ category in SVM model coincides with the AWBES result.  

Learner 1 

Table 1.2 shows the different classes in SVM model and its parameters values for learner 1.  

 

 

Table 1.2: Values of the parameters for the Learner 1 
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 0.8571 16 1 0 0.8571 NaN 1 NaN 0.8571 
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  1 13 1 NaN 1 NaN NaN NaN 1 

    

So accordingly an analysis has been made of all the categories as shown below. The 

results of the analysis is denoted by  ''  and  ‘X’. 

 

 

 

 

 

 

 

 

 

 

 

Table 1.3 : Analysis of the ideal parameters’ values for Learner 1 
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 X  X  X  X  

 ''   : This represents the ideal parameter values. 

‘X’: This represents the values which are not ideal for the parameter.  

 

Table 1.4: Number of ideal parameter value in each category 

Category Number of ideal parameters 

Read again 9 

Forward but Read Again 1 

Forward  5 

Since as compared to other categories the number of '' is more in read again category. 

Therefore, the learner is directed to the read again category. 

 

1.5  Misclassified learners 

As seen in the above cases learners’ knowledge level is successfully analyzed through SVM 

models. Initially, learners’ knowledge level is decided through SVM parameters correct rate, 

support vector, sensitivity, specificity, positive predictive value, negative predictive value, 

positive likelihood value, negative likelihood value and prevalence are to be considered for 

learners’ knowledge level. But the following learners are misclassified due to wrong analysis 

of the SVM model. 

Learner  2 

Table 1.5 shows the different classes in SVM model and its parameters values for learner 2.  

 

 

Table 1.5 : Values of the parameters for the Learner 2 
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0.8571 15 1 0.5000 0.8333 1 2 0 0.7143 
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0.1429 18 0.2500 0 0.2500 0 0.2500 NaN 0.5714 
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1 16 1 1 1 1 NaN 0 0.7143 

    

 So accordingly an analysis has been made of all the categories as shown below. The 

results of the analysis is denoted  by  '' and  ‘X’. 
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Table 1.6 : Analysis of the ideal parameters’ values for Learner 2 
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‘’ : This represents the ideal parameter values. 

               ‘X’: This represents the values which are not ideal for the parameter.  

Table 1.7 : Number of ideal parameter value in each category 

Category Number of ideal parameters 

Read again 4 

Forward but Read Again 0 

Forward  7 

 

Since as compared to other categories the number of ‘’ is more in forward category. 

Therefore, as per the result the learner is directed to the forward. According, to the module 

score learner secured less than 60%, as per pedagogical rules learner should not proceed to 

the next module but SVM is promoting the learner to the next module. 

 

1.6  OUTLINE OF THE WORK 

The learners are being put to rigorous activities. As ANN method likewise SVM method is 

also working in the AWBES model. Every individual learner has to obtain marks, according 

to the prescribed pedagogical rules, if the learner is not able to succeed. Then such a learner 
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has to go through the same module again and again. Until, the learner understands the module 

thoroughly.  

For instance following Table 1.8 is a learner’s score table:- 

On each step modules percentage will increase (score of each module on each step) 

Table 1.8 : Learner’s score table 

Modul

e 

Score Modul

e 

Score Modu

le 

Score Modul

e 

Score Modu

le 

Score 

M1 35 M3 70.567

4 

M9 59 M16 69.056

4 

M26 77.213

4 

M1 45 M4 52.563

4 

M9 70.674

5 

M17 65.785

4 

M27 80 

M1 50 M4 58.666

8 

M10 55.345 M18 67.895

3 

M28 80.342

1 

M1 57 M4 65.234

1 

M11 62.456

8 

M19 70 M29 82 

M1 65 M5 59.432

1 

M12 57.345

6 

M20 70 M30 83 

M2 50 M5 68.672

3 

M12 75.222

3 

M21 68 - - 

M2 58 M6 73.666

7 

M13 63 M22 72.456

7 

- - 

M2 67.458

9 

M7 62.342

1 

M14 71.345

2 

M23 74.679

4 

- - 

M3 55 M8 55 M15 59.868

9 

M24 75 - - 

M3 59.645

3 

M8 72.456

7 

M15 75.678

4 

M25 76.432

1 

- - 

 

 

The following learning curve fig. 1.2: shows that from starting to end gradually learner’s 

score has improved.  
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Fig. 1.2 : Learning curve 

In the below given Table 1.9 a particular learner’s attempts for the adjacent module are 

decreasing with every increase in the module. 

 

Table 1.9 : Learner’s attempts 

Module Attempts Module Attempts Module Attempts 

M1 5 M11 1 M21 1 

M2 3 M12 2 M22 1 

M3 3 M13 1 M23 1 

M4 3 M14 1 M24 1 

M5 2 M15 2 M25 1 

M6 1 M16 2 M26 1 

M7 1 M17 1 M27 1 

M8 2 M18 1 M28 1 

M9 2 M19 1 M29 1 

M10 1 M20 1 M30 1 

 

The following learning curve fig.1.3 shows that learner’s knowledge level has increased. The 

curve shows that in the beginning attempts for a module are greater as compared to the last 

stage. In the end, the learner could clear the entire test as per pedagogical rules in one 
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attempt. During the process, if the learner is not able to fulfill the pedagogical rule, then again 

and again modules or LOs will come in front of them. Accordingly, learner will definitely go 

in depth of the matter to clear the concepts. This exercise helps the learner to improve the 

knowledge level.  

 

 
Fig. 1.3 : Learning curve for the learner’s attempts 

 
 

 

1.7  SUMMARY  

The above experiment proves that like ANN, SVM is also acting as instructor in a 
personalized teaching environment. According to the test results SVM parameters correct rate, 
support vector, sensitivity, specificity, positive predictive value, negative predictive value, 
positive likelihood value, negative likelihood value and prevalence are suggested as the 
knowledge level of the learner. The usage of ANN like machine learning is also found in 
SVM. Thus, SVM can also be successful as machine learning in the field of adaptive web 
based e-learning system. 
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