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ABSTRACT 

Contextual Relation Extraction (CRE) is mainly 

graph with a help of ontology. It performs various tasks such as semantic search, query 

answering, and textual entailment.

texts and the relations among them. An efficie

for creating domain knowledge in the biomedical industry. Existing

and Natural Language Processing

relations from sentences that consist of more 

efficiently. In this work, deep learning techniques have been used to identify the 

appropriate semantic relation based on the

various machine learning models

better results only for binary

entities in a sentence. Machine

consist of the words that have 

learning models have been used

effectively. This paper explores

used for relation extraction.
 

KEYWORDS: Contextual Relation

Deep Learning Model. 

 
INTRODUCTION 

Contextual Relation Extraction (CRE) helps to understand the meaning of the entities 

and their relationship in a sentence. It can improve the performance of

Language Processing tasks

semantic search [1]. Named

classify objects like people,

identifying the terms in a text and arranging in an

named entity recognition and

syntactic patterns is an important factor of NER. Many deep learning

entity recognition applications such as indexing documents, finding relationship

entities, and building an ontology

a rich understanding of the text by identifying both the entities and their relation

based on the context. The joint modeling of entity recognition and relation classification 
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Contextual Relation Extraction (CRE) is mainly used for constructing a knowledge 

ontology. It performs various tasks such as semantic search, query 

answering, and textual entailment. Relation extraction identifies the entities from raw 

texts and the relations among them. An efficient and accurate CRE system is essential 

for creating domain knowledge in the biomedical industry. Existing Machine

Processing (NLP) techniques are not suitable to 

relations from sentences that consist of more than two relations and unspecified entities 

work, deep learning techniques have been used to identify the 

appropriate semantic relation based on the context from multiple sentences.

models have been used for relation extraction,

binary relations, i.e., relations occurred exactly 

Machine learning models are not suited for complex

words that have various meanings. To address these issues, hybrid deep 

learning models have been used to extract the relations from complex

explores the analysis of various deep learning models

extraction. 

Relation Extraction, Word Embeddings, BERT,

Contextual Relation Extraction (CRE) helps to understand the meaning of the entities 

relationship in a sentence. It can improve the performance of

Language Processing tasks such as information retrieval, question 

Named Entity Recognition aims to automatically

people, products, organizations, locations, etc. The process of

identifying the terms in a text and arranging in an appropriate group

and a key component for text analysis. The analysis of common 

syntactic patterns is an important factor of NER. Many deep learning

entity recognition applications such as indexing documents, finding relationship

ontology [2-4]. The combination of NER and CRE

rich understanding of the text by identifying both the entities and their relation

context. The joint modeling of entity recognition and relation classification 
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used for constructing a knowledge 

ontology. It performs various tasks such as semantic search, query 

Relation extraction identifies the entities from raw 

accurate CRE system is essential 

Machine Learning 

 predict complex 

than two relations and unspecified entities 

work, deep learning techniques have been used to identify the 

sentences. Even though 

extraction, they provide 

 between the two 

complex sentences that 

various meanings. To address these issues, hybrid deep 

complex sentence 

learning models that are 

BERT, 

Contextual Relation Extraction (CRE) helps to understand the meaning of the entities 

relationship in a sentence. It can improve the performance of Natural 

 answering, and 

automatically identify and 

organizations, locations, etc. The process of 

group is a source for 

The analysis of common 

syntactic patterns is an important factor of NER. Many deep learning models solve 

entity recognition applications such as indexing documents, finding relationship among 

CRE can provide 

rich understanding of the text by identifying both the entities and their relationships 

context. The joint modeling of entity recognition and relation classification 
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attained more focus recently [5]. Additionally, these end

massively to improve the results.

knowledge graphs that transforms

and Relation extraction are the two

Relation extraction is ongoing research

technology is used to efficiently classify entities and relation. Natural Language 

Understanding (NLU) represents

and a distinct relationship between

for automatically creating 

categorizes the entities from the text

of binary and n-ary relation are shown in

 

 

Figure

 
Binary relation consists of two entities and one relation and n

more than two entities and many relations. Binary relation extraction models may have 

trouble in handling larger 

common issues in binary relation

the text. To find and understand the

categories, RE makes use of a range of technologies.

work on fixed word vector format for word embedding that are

that has multiple semantic meanings. To address this problem, Bo Qiao et

a dynamic fine-tuning method to overcome the issues in static word 

the LSTM-LSTM-Bias method proposed by Zheng et

Bidirectional Encoder Representations from Transformers (BERT), is a machine 

language pre- training model to represent language. BERT uses joint conditions to 

compare each word context

be improved by adding a single

answering and language inference. It does not

Devlin et al. proposed the sig

representations to eliminate the requirement of multiple task

BERT model is based on 

specific architectures and reaches cutting

including token and sentence

architecture help to understand the semantic meaning of the words effectively. Before 
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recently [5]. Additionally, these end-to-end models have generated 

results. Information Extraction (IE) begins with

transforms unformatted text into formatted data. 

and Relation extraction are the two subtasks of IE. 

ongoing research for the recent years. Neural networks

gy is used to efficiently classify entities and relation. Natural Language 

represents the associated relationship among the

between two or more entities. Entity relationship is

 a knowledge graph. Relation extraction instantly detect and 

categorizes the entities from the text during semantic relationship extraction. Example 

ary relation are shown in Figure.1. 

Figure 1. Example of binary and n-ary relation 

Binary relation consists of two entities and one relation and n-ary relation consists of 

two entities and many relations. Binary relation extraction models may have 

 sentence and take lot of time for processing.

relation extraction are ambiguity, incomplete data and noise in 

the text. To find and understand the connections between different established 

categories, RE makes use of a range of technologies. Recent joint extraction models 

work on fixed word vector format for word embedding that are unsuitable for a word 

that has multiple semantic meanings. To address this problem, Bo Qiao et

tuning method to overcome the issues in static word embedding

Bias method proposed by Zheng et al [6]. 

Bidirectional Encoder Representations from Transformers (BERT), is a machine 

training model to represent language. BERT uses joint conditions to 

compare each word context in forward and backward directions. The BERT model can 

be improved by adding a single additional output layer for tasks such as question 

answering and language inference. It does not require major changes in the architecture. 

Devlin et al. proposed the significance of bidirectional pre-training for language 

representations to eliminate the requirement of multiple task-specific architectures.

 the fine tune representation that outperforms

reaches cutting-edge performance on a variety of task levels,

sentence levels. The pre-training and fine-tuning

help to understand the semantic meaning of the words effectively. Before 
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end models have generated 

with the creation of 

Entity extraction 

networks enabled 

gy is used to efficiently classify entities and relation. Natural Language 

the existing objects 

relationship is the basis 

knowledge graph. Relation extraction instantly detect and 

during semantic relationship extraction. Example 

ary relation consists of 

two entities and many relations. Binary relation extraction models may have 

processing. Some of the 

extraction are ambiguity, incomplete data and noise in 

connections between different established 

extraction models 

unsuitable for a word 

that has multiple semantic meanings. To address this problem, Bo Qiao et al. developed 

embedding using 

Bidirectional Encoder Representations from Transformers (BERT), is a machine 

training model to represent language. BERT uses joint conditions to 

in forward and backward directions. The BERT model can 

additional output layer for tasks such as question 

require major changes in the architecture. 

training for language 

architectures. The 

outperforms multiple task-

edge performance on a variety of task levels, 

tuning steps in BERT 

help to understand the semantic meaning of the words effectively. Before 
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solving the joint extraction

BERT can be used for a wide

to the basic model [7]. Figure

based applications. 
 

 

Figure 2. BERT
 

BERT supports NER model

classification layer for predicting named entities. A Question and Answering model can 

be trained using BERT by 

end sentences. BERT Question

context, and the model then generates an answer based on the context. In sentiment 

analysis, the classification layer is

classifications. As the BERT model overcome

number of relations can be generated that helps to generate

questions. 

 

RELATED WORK 

In this section, various models for Relation Extraction (RE) are explored. Relation 

extraction is used to understand the relationships among the various entities in an 

unlabeled text. There are various methods to perform relation extraction

string extraction to automated

 

A. Models for Relation

Recently, many works such as document

to solve the Relation Extraction

1. Pipelined Method:

Categorization as

of-the-art for entity and RE

they obtain a relative improvement

similar pre-trained

2. Joint model: Joint extraction model recognizes entities and relations 

simultaneously and these models extract entities and relations using a single 

Named Entity

Recognition

Recommendation 

Systems 
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extraction task, it pre-trains the BERT model using 

wide range of linguistic activities and primarily 

Figure 2 shows the categorization of various BERT

 

2. BERT (Fine Tuning) based applications 

model training by providing each tokens output

classification layer for predicting named entities. A Question and Answering model can 

 adding two additional vectors to identify the

Question-Answering involves feeding a model with

then generates an answer based on the context. In sentiment 

analysis, the classification layer is included in the transformer top for performing 

As the BERT model overcome the issues of ambiguity, the greater 

number of relations can be generated that helps to generate many knowledge

In this section, various models for Relation Extraction (RE) are explored. Relation 

used to understand the relationships among the various entities in an 

various methods to perform relation extraction

string extraction to automated models. 

Relation Extraction 

Recently, many works such as document-level, pipelined and joint model is proposed 

Extraction tasks. 

Method: The pipeline method treats NER 

as a distinct operation. Zexuan et al. suggested the new state

art for entity and RE using a straightforward pipelined strategy, and 

they obtain a relative improvement over the earlier joint models

trained encoder [8]. 

Joint model: Joint extraction model recognizes entities and relations 

and these models extract entities and relations using a single 

BERT (Fine- 

Tuning) 

Named Entity 

Recognition 

Question and 

Answering 

Sentence 

Classification 

Customer 

Support 
Summarization 
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 another corpus. 

 adds a thin layer 

BERT (Fine Tuning) 

 

output vector into the 

classification layer for predicting named entities. A Question and Answering model can 

the beginning and 

with a question and 

then generates an answer based on the context. In sentiment 

included in the transformer top for performing 

the issues of ambiguity, the greater 

knowledge level 

In this section, various models for Relation Extraction (RE) are explored. Relation 

used to understand the relationships among the various entities in an 

various methods to perform relation extraction, from a simple 

level, pipelined and joint model is proposed 

 and Relation 

distinct operation. Zexuan et al. suggested the new state-

using a straightforward pipelined strategy, and 

models using a 

Joint model: Joint extraction model recognizes entities and relations 

and these models extract entities and relations using a single 
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task. Feature-based

techniques. Zheng

of entities and relations

3. Document-level 

level Relation Extraction,

process. Because

relationships. The

framework was presented for

SIEF framework 

proposed an architecture

and inter sequential

B. Contextual Word Embeddings

Word embeddings are a method for finding similarities between words

predicting the co-occurrence of words in a text using some sort of model. When it was 

proven that word embeddings could be used to find analogies, they became well

in the field of automated 

techniques. 

Table
 

S. No Word 
Embedding
s 

1 TF-IDF 

2 Word2Vec 

3 GLoVe 
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based structured systems compose the majority

eng et al suggested a tagging scheme to convert 

and relations [9]. 

 Relation Extraction Models: When compared

Extraction, document level Relation Extraction

Because document may contain entity pairs 

The Sentence Importance Estimation and Focusing (SIEF) 

framework was presented for document-level. In various disciplines,

 enhances the performance of basic models [10].

architecture to distinguish the document level based

sequential reasoning techniques [11]. 

Embeddings for Relation Extraction 

Word embeddings are a method for finding similarities between words

occurrence of words in a text using some sort of model. When it was 

embeddings could be used to find analogies, they became well

 text analysis. Table 1 illustrates various w

Table 1. Word Embedding Techniques 

Explanation Feature 

A statistical technique for 

determining a word's 

relevance to the corpus of 

text. It doesn't record 

word associations with 

semantic 
meaning. 

Perform well 

information and

keywords from 

CBOW and Skip-gram 

architecturesbased on 

neural networks are 

superior at 
capturing
 semanti
c information. 

Suitable for smaller

datasets. 

Global word-word co- 

occurrence-based matrix 

factorization. It resolves 

Word2Vec's local context 

issues. 

Better in tasks that involve 

word analogies

entity recognition.

is commonly used

analysis tasks. 
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majority of joint 

 joint extraction 

compared to sentence-

Extraction is a complex 

 with multiple 

Sentence Importance Estimation and Focusing (SIEF) 

disciplines, the 

[10]. Zeng et al. 

based on the intra 

Word embeddings are a method for finding similarities between words in a corpus by 

occurrence of words in a text using some sort of model. When it was 

embeddings could be used to find analogies, they became well-known 

various word embedding 

 on retrieving 

and extracting 

 documents. 

smaller and larger 

Better in tasks that involve 

analogies and named-

recognition. Word2Vec 

used in semantic 
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4 BERT 

 

Contextual embeddings represent each word based on

usage across a range of situations and encode cross

embeddings, such as ELMo and BERT, perform significantly better than generic word 

representations. The ELMo of

representations from its intermediary layer

combines both the representations of forward and

between the left and right 

Masked Language Modeling (MLM) that involves randomly

tokens in input sequence. It employs a Transformer encoder during pre

focus on instances involving bi

Sentence Prediction (NSP).

Despina et al. predicts better embeddings using fine

BERT perform better than Word2Vec, and offer ground

range of NLP applications. Using

(NLP) determines whether

facilitate the tasks which needs sentence pairs

C. Datasets for Relation

Several datasets for relation extraction have been developed recently to enhance the 

relation extraction systems. Two examples of RE datasets created through human 

annotations with relation

crowdsourcing method is used

large-scale dataset. To enhance

Ten thousand annotated examples

FewRel. The issues with 

development of FewRel and

that has been identified from

 

ANALYSIS OF DEEP

Deep learning uses artificial neural networks

supervised, semi-supervised, or unsupervised. 

Intelligence based systems have elevated concerns regarding understandability [19]. 

Rahman et al. constructed artificial neural n

radiation [20]. Representation

identifying patterns and anomalies. A

data like human brain. The hidden 

networks consist of 150 hidden layers, compared to the

traditional neural networks normally have. The structure of deep neural

depicted in Figure 3. 
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High-quality contextual 

information can be 

captured via a 

transformer-based 
attention method. 

Translation services

question-and-answer platform 

are used in the 

engine 
to interpret search

Contextual embeddings represent each word based on its context, capture the word 

a range of situations and encode cross-linguistic knowledge. Contextual 

ELMo and BERT, perform significantly better than generic word 

representations. The ELMo of the bidirectional Language Model combines the 

representations from its intermediary layer according to the task at hand. When ELMo 

combines both the representations of forward and backward LSTMs,

 contexts are not taken into consideration [12

Masked Language Modeling (MLM) that involves randomly masking some of the 

tokens in input sequence. It employs a Transformer encoder during pre

focus on instances involving bi-directional communication and the other one is Next

(NSP). RE with Distant Supervision and Transformers

et al. predicts better embeddings using fine-tuning BERT [13]. ELMo and 

than Word2Vec, and offer ground-breaking performance in a 

applications. Using two input sentences, natural language

whether the preceding sentence follows the first one. NLP helps to 

facilitate the tasks which needs sentence pairs analysis. 

Relation Extraction 

sets for relation extraction have been developed recently to enhance the 

extraction systems. Two examples of RE datasets created through human 

relation types are SemEval-2010 Task 8 and

used to build TACRED dataset to meet the 

enhance document-level RE research, DocRED

examples and more than one hundred relations

 few-short relation extraction have been addressed

and FewRel 2.0. HacRED consists of 65,225

from 9,231 documents [14-18]. 

DEEP LEARNING MODELS 

Deep learning uses artificial neural networks using representation learning. It can be 

supervised, or unsupervised. The rapid growth and use of Artificial 

systems have elevated concerns regarding understandability [19]. 

artificial neural networks model for effectively forecast solar 

radiation [20]. Representation learning helps to reduce the data dimension to simplify in 

identifying patterns and anomalies. A neural network instructs computers to scrutinize 

data like human brain. The hidden layers are referred as the term "deep." Deep neural 

networks consist of 150 hidden layers, compared to the two or three layers that 

traditional neural networks normally have. The structure of deep neural
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services and a 

answer platform 

 Google Search 

search keywords. 

its context, capture the word 

linguistic knowledge. Contextual 

ELMo and BERT, perform significantly better than generic word 

del combines the 

according to the task at hand. When ELMo 

LSTMs, the interactions 

consideration [12]. BERT offers 

masking some of the 

tokens in input sequence. It employs a Transformer encoder during pre- training to 

directional communication and the other one is Next 

Transformers suggested by 

tuning BERT [13]. ELMo and 

breaking performance in a 

language processing 

sentence follows the first one. NLP helps to 

sets for relation extraction have been developed recently to enhance the 

extraction systems. Two examples of RE datasets created through human 

and ACE05. The 

 demands of the 

DocRED was developed. 

relations are included in 

addressed with the 

65,225 relational facts 

using representation learning. It can be 

The rapid growth and use of Artificial 

systems have elevated concerns regarding understandability [19]. 

etworks model for effectively forecast solar 

learning helps to reduce the data dimension to simplify in 

neural network instructs computers to scrutinize 

referred as the term "deep." Deep neural 

two or three layers that 

traditional neural networks normally have. The structure of deep neural network is 



R. Priyadharshini,

 

Research Cell: An International Journal of Engineering Science
A Peer reviewed and refreed journal, 

ISSN: 2229-6913(Print), ISSN: 2320

 

 

 

 

Figure
 

Deep learning model helps to learn categorization that take input from the various 

sources such as images, text, and sounds. It can also attain high accuracy, occasionally 

even superior human performance. Large labeled dat

are used to train the models to

has the ability to achieve high levels of

There are many complex problems to solve in

language problems, deep learning achieves the best

the deep learning techniques that are widely used in the task

RE model on Deep learning Techniques 

 

Table
 

S. No Models Working

1 CNN 

[21-23] 

Convolutional Neural Network has

Multiple

extract features.

2 
Bi-GRU 

[24] 

Model 

Recurrent

bidirectional

Network.

3 LSTM 

[25] 

Long Short

and remembers enduring addictions

and long
knowledge.

4 CRF 

[26] 

It's a discriminative

contextual
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Figure 3. Structure of Deep Neural Network 

Deep learning model helps to learn categorization that take input from the various 

as images, text, and sounds. It can also attain high accuracy, occasionally 

performance. Large labeled data and multi-layered architectures 

are used to train the models to learn data characteristics automatically. Deep learning 

has the ability to achieve high levels of accuracy when trained on huge amounts of data. 

There are many complex problems to solve in natural language. In some specific natural 

language problems, deep learning achieves the best results. Table. 2 illustrates some of 

the deep learning techniques that are widely used in the task of RE. Survey on existing 

RE model on Deep learning Techniques using various dataset are mentioned

Table 2. Deep Learning Techniques 

Working Principle Benefits 

Convolutional Neural Network has 

Multiple layers to process and 

extract features. 

human 

supervision is not

required for

features 
recognizing. 

 that combines the Gated 

Recurrent Unit (GRU) and the 

bidirectional Recurrent Neural 

Network. 

Simple than

LSTM 

Short-Term Memory picks up 

and remembers enduring addictions 

long-term retention of past 
knowledge. 

Offers parameters

like learning rates,

input, and output 
biases. 

discriminative model to predict 

contextual information. 

Perform well on

NLP tasks such as

part of speech 
tagging, NER. 
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Deep learning model helps to learn categorization that take input from the various 

as images, text, and sounds. It can also attain high accuracy, occasionally 

layered architectures 

learn data characteristics automatically. Deep learning 

accuracy when trained on huge amounts of data. 

atural language. In some specific natural 

results. Table. 2 illustrates some of 

of RE. Survey on existing 

mentioned in Table. 3. 

Issues 

not 

for 

Overfitting, 

exploding 

gradient, and 

class 
imbalance. 

than Only input 

and forget 

gate. 

Offers parameters 

like learning rates, 

 

Overfitting 

on 

NLP tasks such as 

More 

accurate but 

difficult to 
train. 
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5 
BiLST 

M 

[27] 

Bidirectional

networks

separate

access both forward and 

information.

6 RNN 

[28] 

RNN has

directed

current phase to accept the LSTM

outputs as 

memory,

recall previous inputs
an input

7 MLPs 

[29] 

Made 

perceptron

capabilities.

output are interconnected and have

equal layers

8 DBNs 

[30] 

Made up

random

often called

characterized

Boltzmann
connections

9 RBM 

[31] 

Consists of both visible and hidden

components.

linked to all visible units.
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Bidirectional recurrent neural 

networks are the combination of two 

separate RNNs. The networks 

access both forward and backward 

information. 

Better predictions

compared to Auto

Regressive 

Integrated 

Moving Average 

(ARIMA). 

has connections that form 

directed cycles that allows the 

current phase to accept the LSTM 

outputs as inputs. Due to its internal 

memory, the LSTM's output can 

previous inputs and is used as 
input in the current phase. 

Remembers every

piece of

information 

through time. 

 up of many layers of 

perceptron with activation 

capabilities. Layers of input and 

output are interconnected and have 

layers for the input and output. 

Used to solve 

complex 

nonlinear 

problems. 

up of a lot of latent and 

random layers. Latent variables, 

called hidden units that are 

characterized by binary values. 

Boltzmann machines has 
connections between its layers. 

Powerful and

learn complex

patterns. Process

large amounts of

data very quickly.

Consists of both visible and hidden 

components. All hidden units are 

to all visible units. 

Computationally 

efficient and faster

than a typical

Boltzmann 
Machine. 
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predictions 

Auto 

 

Slower and 

requires 

more time. 

every 

of 

Exploding 

gradient 

problem, and 

long-term 

dependency 

of words. 

Feature 

scaling, and 

Computation 

al 

complexity. 

and 

complex 

Process 

of 

very quickly. 

Hardware 

requirements 

, expensive to 

train. 

faster 

typical 

Hard to 

evaluate or 

simulate. 
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Table. 3 Comparison
 
 

S. No Authors & 

Year 

Objective

1 Chen Gao 

et al 

2022 [32] 

BERT        
based 

transformer

is used. Extracts the

semantic

between entity and

relation extraction.

2 O.A 

Tarasova et 

al 2022 [33] 

Method 

Clinical 

Entities 

which combines the

naive 

classifier

specially

filters. 

3 T.Bai et al 

2022 [34] 

Segment

method 

CNN to

local semantic

properties

word embedding.

4 Qingbang 

W et al 

2022 [35] 

An 

relationship

extraction

for food

opinion. 

efficiently

the information

semantic

the current

5 Hailin 

Wang et al 

2022 [36] 

Supervised

distant 

methods

Relation

6 Yang Yang 

et al 

2022 [37] 

Basics 

DL, 

concentrating

DL technologies in

the field 
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Comparison of Deep Learning Relation Extraction Models

Objective Techniques Issues Dataset

BERT         encoder 
 on the 

transformer model 

is used. Extracts the 

semantic mutuality 

between entity and 

extraction. 

HBT, 
WDec and 

CasREL 

Overlapping 

entities in the 

sentence cannot 

be resolved by 

this technique. 

New

Times

(NYT),

WebNLG

 to extract 

 Named 

 from texts 

which combines the 

 Bayes 

classifier with 

specially built 

Naïve 

Bayes 

classifier 

The result of 

CNER using 

naive-Bayes 

method   is 

slightly worse. 

CHEMDNE

R

Segment attention 

 based on 

to extract 

semantic 

properties through 

embedding. 

SVM, 

KNN, 

CNN, and 

SEGATT- 

CNN 

This model 

applies only to 

supervised 

methods 

Herbal

Disease

Herbal

Chemistry,

HD

Entity- 

relationship 

extraction model 

food public 

 This model 

efficiently predicts 

information and 

semantic context of 

current text. 

BERT- 

BiLSTM, 

BiLSTM- 

ATT 

The BERT- 

BLSTM 

network does 

not function 

well when 

dealing with the 

issue of partial 

entity overlap. 

Food

opinion

data

Supervised and 

 supervision 

methods for 

Relation Extraction. 

DNN, RNN 

and PCNN 

Error 

propagation in 

supervised 

methods. 

SemEval

2010

ACE

and

NYT+Freeba
se

 of IE and 

 mainly 

concentrating on 

DL technologies in 

field of IE. 

RNN, CNN 
and 

BiLSTM 

DNN models 
cannot handle 

all  the 

knowledge in 

huge database. 

COVID
news
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Models 

Dataset 

New York 

Times 

(NYT), 

WebNLG 

CHEMDNE 

R 

Herbal- 

Disease and 

Herbal 

Chemistry, 

HD-HC 

Food public 

opinion field 

data 

SemEval 

2010-task8, 

ACE series 

and 

NYT+Freeba 
se 

COVID-19 
news 



R. Priyadharshini,

 

Research Cell: An International Journal of Engineering Science
A Peer reviewed and refreed journal, 

ISSN: 2229-6913(Print), ISSN: 2320

 

 

7 Zhiyun Z et 

al 

2022 [38] 

Distant 

Relation Extraction

(DSRE) 

using 

network.

8 Guangyao 

Wang et al 

2022 [39] 

Weighted

convolutional

network 

model to

nontaxonomic

relationships.

9 Chantrapor 

nchai et al 

2021 [40] 

BERT 

model 

specific 

from entire

based on
learning.

10 W. Zhou et 

al 

2021 [41] 

The multi

multi-entity

problems

using 

thresholding

localized

pooling. 

11 Prashant S 

et al 

2021 [42] 

Attention

Model 

framework

improve
applicability

attention

model for

Extraction.

12 Liu Kang et 

al 

2020 [43] 

Neural 

extraction

specific 

train neural
extraction
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 Supervised 

Relation Extraction 

 model 

 residual 

network. 

CNN-ATT, 

PCNN- 

ATT, and 

DSRE 

Noise label 

reducing. 

Freebase

NYT

Weighted  graph 

convolutional 

 (WGCN) 

model to extract the 

nontaxonomic 

relationships. 

LSTM, 

CNN and 

BiLSTM 

When

 th

e feature graph 

is used as an 

input to the 

GCN, the 

directed graph's 

effect is not 
better. 

Human

annotated RE

data,

data

 and spacy 

 to extract 

information 

entire texts 

on machine 
learning. 

BERT, 

Spacy 

The 

Performance of 

SpaCy is poor. 

Tourism

Data

multi-label and 

entity 

problems are solved 

 adaptive 

thresholding and 

localized context 

 

BERT- 

ATLOP, 

BERT-E 

Adaptive 

thresholding 

only

 work

s when the 

model is 

optimized. 

DocRED,

CDR

Attention Retrieval 

 (ARM) 

framework to 

 the 
applicability of 

attention-based 

for Relation 

Extraction. 

LSTM, 

RNN, and 

GRU 

The

 AR

M technique 

 must 

test the model 

rather  

 than 

categorize the 

text   

 for 

understanding 

the

 languag

e context 

between the 

 repeated 
words in a text. 

Atlas

Inflammatio

n

(AIR),

BioGRID,

and

ChemProt.

 relation 

extraction with a 

 focus to 

neural relation 
extraction model. 

BERT, 

LSTM, and 

BiLSTM 

Unable to meet 

demand

 i

n practical 

applications. 

ACE,

SemEval

2010,

TACRE.

March 2023, Vol. 35,  
(till May 2018) 

vidyapublications.com 

 

83 

Freebase + 

NYT 

Human- 

annotated RE 

data, NYT 

data 

Tourism 

Data 

DocRED, 

CDR 

Atlas of 

Inflammatio 

n Resolution 

(AIR), 

BioGRID, 

and 

ChemProt. 

ACE, 

SemEval 

2010, 

TACRE. 
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13 Boran Hao 

et al 

2020 [44] 

Novel joint training

technique is used to

develop 

model 

for clinical corpora

using 

from the

Medical 

System 

knowledge

14 Diana 

Sousa et al 

2020 [45] 

BiOnt 

different

biomedical

ontologies

perform 
extraction.

15 Rakesh 

Patra et al 

2019 [46] 

A Model

automatic

generation

named 

distractor.

combination       
statistical

semantic

is used. 

 

16 

Veera 

Ragavendra 

et al 2018 
[47] 

The 

method 

relationship

17 S. Zeng et 

al 

2018 [48] 

Separate

Inter-sentential

Reasoning

Document

Relation

(SIRE) architecture

to 

represents

and inter

relationships

different
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Novel joint training 

technique is used to 

 language 

pre-training 

for clinical corpora 

information 

the Unified 

 Language 

 (UMLS) 

knowledge base. 

Clinical 

BERT + 

BiLSTM, 

Clinical 

KB- 

ALBERT 

The 

improvement for 

ALBERT is less 

significant. 

MIMIC
and

Knowledge

Base

 uses four 

different kinds of 

biomedical 

ontologies   to 

  relation 
extraction. 

BO-LSTM, 

BioBERT 

This approach 

does not allow 

for

 th

e 

integration of 

ontological 
knowledge. 

DDI

PGR

BC5CDR

corpus

Model  for 

automatic 

generation   of 

 entity 

distractor.   A 

combination        of 
statistical and 

semantic similarity 

 

Frequency 

based, 

Co- 

occurrence 

based 

Existing 

techniques focus 

on

 languag

e learning 

 and 

vocabulary 

testing, 

 these 

metrics are not 

applicable  

 for 

evaluating the 

named

 entit

y distractors. 

200

related

MCQ

pairs

 rule-based 

 for 

relationship classes. 

SVM, 

BiLSTM 

Suitable only 

for smaller 

number of 

samples. 

I2b2 2010

Separate Intra- and 

sentential 

Reasoning  for 

Document-level 

Relation Extraction 

architecture 

effectively 

represents intra- 

inter-sentential 

relationships   in 

different ways. 

BiLSTM, 
BERT, and 

SIRE- 

BERT 

This

 mode

l primarily 

enhances 

 intra- 

sentential 

relations' 

performance. 

DocRED,
CDR, and

GDA
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MIMIC-III 
and UMLS 

Knowledge 

Base 

DDI corpus, 

PGR corpus, 

BC5CDR 

corpus 

200 cricket- 

related 

MCQ-key 

pairs 

I2b2 2010 

DocRED, 
CDR, and 

GDA 



R. Priyadharshini,

 

Research Cell: An International Journal of Engineering Science
A Peer reviewed and refreed journal, 

ISSN: 2229-6913(Print), ISSN: 2320

 

 

 

DISCUSSION 

The comparison of existing relation models with 

based relation extraction model

models such as CNN, RNN, KNN, etc. BERT reads text input in both left

right-to-left directions at once. Using this bidire

two different NLP tasks such as

Prediction. It is observed that the model can be

tourism, agriculture, and so on. Table 4 shows 

relation extraction models based

accuracy (F1 score) of the BERT, CNN, and RNN based models

dataset. The F1 statistical metric is 

model’s accuracy. From the literature survey, it has been identified that the

BiLSTM-CRF model achieves

extraction. Even though several

developed, the overlapping 

development state. 

 
Table. 4 Performance

 

Model 

SIRE-BERT 

RoBERT-ATLOP 

MDL-J3E 

KNN 

BiDAG LSTM 

BERT 

18 Jing Qiu et 

al 

2018 [49] 

SGNRI 

extract 

taxonomic

associations

multi-phase

correlation

automated

19 Henghui et 

al 

2018 [50] 

Developed a model

for the 

clinical 

extraction

contextual

embedding
approach.

20 Linfeng 

Song et al 

2018 [51] 

Graph-state

model 

displaying

discourse

relationship
structures.
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The comparison of existing relation models with various techniques shows that BERT 

model provides significantly improved performance

CNN, RNN, KNN, etc. BERT reads text input in both left

once. Using this bidirectional capability, BERT is pretrained on 

two different NLP tasks such as Masked Language Modeling and Next Sentence 

Prediction. It is observed that the model can be used for various domains such as clinical, 

tourism, agriculture, and so on. Table 4 shows the performance evaluation

based on deep learning techniques. Table 5 lists the performance 

accuracy (F1 score) of the BERT, CNN, and RNN based models for the SemEval 2010 

dataset. The F1 statistical metric is employed to calculate an estimation of the deep learning 

model’s accuracy. From the literature survey, it has been identified that the

achieves better results for breast cancer concepts and

several BERT based relation extraction for different

 of relation and partial entity overlapping

4 Performance evaluation of existing relation extraction models.

Dataset F1 score Reference

DocRED 62.05 [9]

DocRED 63.40 [41]

COVID-19 News 70.96 [28]

CDR 71.49 [34]

Biomedical 75.6 [51]

Tourism data 77.96 [40]

 model to 

 non- 

taxonomic 

associations using a 

phase 

correlation search 

automated system. 

SGNRI(Wo 

rd2Vec) 

SGNRI(LD 

A) 

The 

performance of 

the

 word2Vec

- based model is 

poor. 

Concept

Pairs

Developed a model 

 purpose of 

 feature 

extraction using a 

contextual word 

embedding 
approach. 

BiLSTM- 

CRF, 

ELMo 

Difficulties    in 
creating

 

a language 

model on a big 

corpus of 

domain- specific 

data. 

I2B2 2010

state LSTM 

 for 

displaying 

discourse and 

relationship 
structures. 

Bidirection 

al DAG 

LSTM, 

GLSTM 

Word

 sens

e confusion 

Biomedical

domain
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various techniques shows that BERT 

performance than other 

CNN, RNN, KNN, etc. BERT reads text input in both left-to-right and 

ctional capability, BERT is pretrained on 

Masked Language Modeling and Next Sentence 

used for various domains such as clinical, 

evaluation of existing 

Table 5 lists the performance 

for the SemEval 2010 

the deep learning 

model’s accuracy. From the literature survey, it has been identified that the BERT-

and their attributes 

different fields are 

overlapping are still in a 

models. 

Reference 

[9] 

[41] 

[28] 

[34] 

[51] 

[40] 

Concept 

Pairs 

I2B2 2010 

Biomedical 

domain 
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SGNRI 

KB-BERT 

BiLSTM 

WCGN 

BERT-BiLSTM 

ELMo+BiLSTM-CRF

BERT-BiLSTM-CRF

 
 

Table. 5 Comparison of CNN,
 

Model 

Att+CNN

CR-CNN

MVRNN

BRCNN

Att+BiLSTM

R-BERT

BERT-GCN

 
 

Relation extraction offers a wide range of applications including information retrieval, 

question answering, and knowledge base construction, etc. Creating models that can 

extract relationships in a multilingual and cross

of focus. Additionally, the combination of relation extraction with other NLP tasks such as 

named entity recognition and

and sophisticated NLP systems.

considered for improving the relation prediction

RoBERTa, DistilBERT, and XLNet can be incorporated to

prediction. 
 

CONCLUSION 

This paper provides information on conceptual r

techniques used. It affords information on various deep learning models which are used in 

different tasks such as building classification models, developing recommendation 

systems, learning behavior predictions,

models can provide better accuracy

multiple sentences. While comparing to other

of accuracy with limited information. In 

focused to improve prediction
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