
86

© 2011 Journal Anu Books Authors are responsible for any plagiarism issues.

Sneha Chhabra, Raman Maini

Comprehensive Review of Data Prefetching
Mechanisms

1Sneha Chhabra, 2Raman Maini
1University College of Engineering, Punjabi University, Patiala

2Associate Professor, University College of Engineering, Punjabi University,
Patiala

er.snhchhabra@hotmail.com, research_raman@yahoo.com

Abstract: The expanding gap between microprocessor and DRAM
performance has necessitated the use of some other techniques designed
to reduce or hide the latency of main memory accesses. Although large
cache hierarchies have proven to be effective in reducing this latency for
the most frequently used data, but it is still not so efficient.

This paper proposed a technique i.e. DataPrefetching Technique for
hiding the access latency of data referencing patterns that defeat caching
strategies. Rather than waiting for a cache miss to initiate a memory fetch,
data prefetching anticipates such misses and issues a fetch to the memory
system in advance of the actual memory reference. With data prefetching,
memory system call data into cache before processor needs it, thereby
reducing memory access latency. The following survey examines several
alternative approaches and discusses the design tradeoffs involved when
implementing a data Prefetch strategy.

Keywords: Prefetching, Memory Latency.

87Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue Dec. 2011, Vol. 5

© 2011 Journal Anu Books Authors are responsible for any plagiarism issues.

Introduction
Processor performance has been increasing much faster than that of

memory performance over the last three decades. While processor
performance followed Moore’s law [3] and improved by 50% annually till
2004 and 20% since, memory performance has been improving by a mere
9% a year. This has caused a large gap and made memory a performance
bottleneck. The problem is only getting worse with the rapid growth of
multicore processors as multiple cores contend for accessing data from
memory, which is shared by these cores. Traditionally cache memories
were used to improve the performance of memory accesses using the
principle of locality. Yet, optimizations are necessary to improve the usage
of cache memories and to reduce cache misses. Data prefetching has
been considered an effective way to mask data access latency. Data
prefetching is a data access latency hiding technique, which decouples and
overlaps data transfers and computation. In order to reduce CPU stalling on
a cache miss, data prefetching predicts future data accesses, initiates a
data fetch, and brings the data closer to the computing processor before it
is requested. Memory latency has always been a major issue in
sharedmemory multiprocessors. This is even more true as the gap between
processor and memory speeds continues to grow. This expanding gap
between microprocessor and DRAM performance has necessitated the use
of increasingly aggressive techniques designed to reduce or hide the large
latency of memory accesses [1].In order to fully utilize such systems, it is
essential to use the memory hierarchy [2] effectively, in order to reduce
memory latency. In this paper, we study how data prefetching into the first-
level cache can eliminate cache misses. In addition, our techniques can
generalize to data prefetching in other levels of the memory hierarchy [2].
There are two main classes of data prefetching. In hardware prefetching,
the hardware alone decides what data to Prefetch and when and where to
Prefetch the data. In software prefetching, the hardware supports a
prefetching instruction. The user, or compiler, then directs prefetching by
inserting prefetching instructions into the code. Both hardware and software
prefetching have been studied extensively, and have been shown to be
effective; however, both types of prefetching have their shortcomings. For

88

© 2011 Journal Anu Books Authors are responsible for any plagiarism issues.

Sneha Chhabra, Raman Maini

example, hardware prefetching can require complex and expensive hardware,
while software prefetching requires extra CPU instructions. In this paper,
we propose a method for integrated hardware/software prefetching. Now,
what is necessary to design a data prefetching strategy? Traditionally,
prefetching considered two issues: what to Prefetch and when to prefetch.
What to Prefetch decides what data a processor might need in the future.
When to prefetch decides how early data has to be fetched and avoid any
negative effects because of prefetching.

VARIOUS DATA PREFETCHING STRATEGIES
There are various data prefetching techniques:
 Software Prefetching.

 Hardware Prefetching

 Integrated Software and Hardware Prefetching.

SOFTWARE DATA PREFETCHING
It is increasingly common for designers to implement Data prefetching

by including a fetch instruction in a microprocessor’s instruction set. A fetch
specifies the address of a data word to be brought into the cache. Upon
execution, the fetch instruction passes this address to the memory system,
which forwards the word to the cache. Because the processor does not
need the data yet, it can continue computing while the memory system
brings the requested data to the cache.

Prefetch scheduling
Choosing where to place a fetch instruction relative to the corresponding

load or store instruction is known as Prefetch scheduling. Software
prefetching can often take advantage of compile-time information to schedule
prefetches more accurately than hardware techniques. In practice, it is not
possible to predict exactly when to schedule a Prefetch so that data arrives
in the cache exactly when it will be requested by the processor. The execution
time between the Prefetch and the matching load or store may vary, as will

89Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue Dec. 2011, Vol. 5

© 2011 Journal Anu Books Authors are responsible for any plagiarism issues.

memory latencies. These uncertainties must be considered when deciding
where in the program to place fetch instructions. If the compiler schedules
fetches too late, the data will not be in the cache when the processor needs
it. If the compiler schedules the fetches too early, the cache may evict the
data before it can be used to make room for data that the controller fetches
later. Early prefetches also might displace data in the cache that the processor
is using at the time. This situation, in which there is a miss that would not
have occurred without prefetching, is called cache pollution.

Prefetching for loops
Prefetching is most often used within loops responsible for large array
calculation. Such loops, which are common in scientific code, provide
excellent prefetching opportunities because they exhibit poor cache utilization
and often have predictable memory-referencing patterns.

Simple prefetching. The code segment in shown in figures. This loop sums
the elements of array a. If we assume a four-word cache block, this code
segment will cause a cache miss every fourth iteration. We can try to avoid
these cache misses by using the Prefetch directives added. The Prefetch
of the array element to be used in the next loop iteration is scheduled just
before computation for the current iteration begins. However, prefetching
every iteration of this loop is unnecessary because each fetch actually brings
four array elements into the cache. Prefetching should thus be done only
every fourth iteration. One solution is to surround the fetch directives with
an if condition that tests when (i modulo 4) = 0 is true.

Unrolling the loop. Unrolling the loop by a factor of r (where r is equal to
the number of words to be prefetched per cache block) is more effective
than using an explicit Prefetch predicate. Unrolling a loop involves replicating
the loop body r times and increasing the loop increment stride from one to r.
In the process the compiler doesn’t replicate fetch directives, but it does
change the array index, which it uses to calculate the Prefetch address,
from i + 1 to i + r. Nonetheless, cache misses will occur during the
Loop’s first iteration because prefetches are never issued for this iteration.
In addition, unnecessary prefetches will occur in the unrolled loop’s last

90

© 2011 Journal Anu Books Authors are responsible for any plagiarism issues.

Sneha Chhabra, Raman Maini

iteration, in which the fetch command tries to access data past array
boundaries.

Software pipelining: Software pipelining techniques can solve these
problems. In this figure, we have extracted some code segments from the
loop body and placed them on either side of the original loop. We have
added a loop prologue consisting of fetch statements to the beginning of the
main loop to prefetch data for the first iteration. We added an epilogue to the
end of the main loop to execute the final computations without initiating
unnecessary prefetch instructions.

for (i = 0; I < N; I ++)
ip = ip + a[i]*b[i];

(a)
for (i = 0; i < N; i++){

fetch(&a[i+1]);
fetch(&b[i+1]);

ip = ip + a[i]*b[i];
}

(b)
for (i = 0; i < N; i+=4){

fetch(&a[i+4]);
fetch(&b[i+4]);

ip = ip + a[i]*b[i];
ip = ip + a[i+1]*b[i+1];
ip = ip + a[i+2]*b[i+2];
ip = ip + a[i+3]*b[i+3];

}
(c)

fetch(&ip);
fetch(&a[0]);
fetch(&b[0]);

for (i = 0; i < N-4; i+=4){
fetch(&a[i+4]);
fetch(&b[i+4]);

ip = ip + a[i] *b[i];
ip = ip + a[i+1]*b[i+1];
ip = ip + a[i+2]*b[i+2];

91Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue Dec. 2011, Vol. 5

© 2011 Journal Anu Books Authors are responsible for any plagiarism issues.

ip = ip + a[i+3]*b[i+3];
}

for (; i < N; i++)
ip = ip + a[i]*b[i];

(d)

Inner product calculation using a) no prefetching, b) simple
prefetching, c) prefetching with loop unrolling and d) software
pipelining.

Hardware Prefetching

Hardware-based prefetching techniques do not incur the instruction overhead
associated with the use of explicit fetch instructions. These techniques do
not require changes to existing executables, so there is no need for
programmer or compiler intervention.

Sequential prefetching

Sequential prefetching can take advantage of spatial locality without
introducing some of the problems associated with large cache blocks. The
simplest sequential prefetching schemes are:-

OBL approach. The simplest sequential prefetching schemes are variations
upon the one-block-look ahead (OBL) approach, which automatically initiates
a prefetch for block b + 1 when block b is accessed.

Smith [2] summarizes several of these approaches of which the prefetch-
on-miss and tagged prefetch algorithms will be discussed here. This
approach differs from simply doubling the block size because the demand-
fetched block and the prefetched block are considered separate items for
cache replacement and coherency purposes. The use of separate, smaller
blocks means the computer does not have to evict large amounts of data
each time it replaces items in the cache. Smaller blocks also reduce the
chance of false sharing.OBL implementations differ depending on what type
of access to block b initiates the prefetch of b + 1.

92

© 2011 Journal Anu Books Authors are responsible for any plagiarism issues.

Sneha Chhabra, Raman Maini

The prefetch-on-miss algorithm initiates a prefetch for block b + 1
whenever an access for block b results in a cache miss. If b + 1 is already
cached, no memory access is initiated.

• The tagged prefetch algorithm associates a tag bit with every cache
block. This bit detects when a block is fetched or when a prefetched block is
referenced for the first time. In either case, the next block in memory is
fetched. Tagged prefetching is more expensive to implement because of
the addition of the tag bits to the cache and the need for a more complex
cache controller design.

Tagged prefetching, on the other hand, can initiate a “domino effect” that
avoids all but the first miss. So, when the prefetched block b + 1 is accessed,
a prefetch for b + 2 is initiated, and when b + 2 is accessed, b + 3 is
prefetched. The process continues until the sequential access stream
terminates. A shortcoming of OBL schemes is that the memory system
may not initiate a prefetch for data far enough in advance of the data’s actual
use to avoid a processor memory stall. A sequential access stream resulting
from a tight loop, for example, may not allow sufficient time between the use
of blocks b and b + 1 to completely hide the memory latency.

93Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue Dec. 2011, Vol. 5

© 2011 Journal Anu Books Authors are responsible for any plagiarism issues.

Three forms of sequential prefetching: a) Prefetch on miss, b) tagged
prefetch and
c) sequential prefetching with K = 2.
Adaptive sequential prefetching Dahlgren and Stenström [4] proposed
an adaptive sequential prefetching policy that allows the value of K to vary
during program execution in such a way that K is matched to the degree of
spatial locality exhibited by the program at a particular point in time. To do
this, a Prefetch efficiency metric is periodically calculated by the cache as
an indication of the current spatial

locality characteristics of the program. Prefetch efficiency is defined to
be the ratio of useful prefetches to total prefetches where a useful prefetch
occurs whenever a prefetched block results in a cache hit. The value of K is
initialized to one, incremented whenever the prefetch efficiency exceeds a
predetermined upper threshold and decremented whenever the efficiency
drops below a lower threshold as shown in Figure 2. Note that if K is reduced
to zero, prefetching is effectively disabled. At this point, the prefetch hardware
begins to monitor how often a cache miss to block b occurs while block b-
1 is cached and restarts prefetching if the respective ratio of these two
numbers exceeds the lower threshold of the prefetch efficiency.

Simulations of a shared memory multiprocessor found that adaptive
prefetching could achieve appreciable reductions in cache miss ratios over
tagged prefetching.

Comparing approaches: Simulations on a shared memory multiprocessor
found that adaptive prefetching reduced cache misses more effectively than
tagged prefetching but did not significantly reduce runtime. Dahlgren and
Stenström [4] compared tagged and RPT prefetching in the context of a
distributed shared memory multiprocessor. Adaptive sequential prefetching’s
lower miss ratio was partially offset by the increased memory traffic and
contention created by the additional unnecessary prefetches[2].Tagged
prefetching is simpler, offers good performance, and is an attractive option
when cost and simplicity are important design considerations.

94

© 2011 Journal Anu Books Authors are responsible for any plagiarism issues.

Sneha Chhabra, Raman Maini

Prefetching with arbitrary strides

When the processor ’s referencing pattern strides through
nonconsecutive memory blocks, sequential prefetching will cause needless
prefetches and will thus become ineffective. We need more elaborate
prefetching techniques to take advantage of both small and large stride array-
referencing patterns while ignoring references that are not array-based.

One such technique employs special prefetch hardware that monitors
the processor’s address-referencing pattern and infers prefetching
opportunities by comparing successive addresses used by load or store
instructions. If the prefetch hardware detects that a particular load or store
is generating a predictable memory-addressing pattern, it will automatically
issue prefetches for that instruction. To illustrate one aggressive scheme,
10 assume that a memory instruction, mi, references addresses a1, a2,
and a3 during three successive loop iterations. The Prefetch hardware
initiates a Prefetch for mi if (a2 - a1) = D ¹ 0, where D is the stride of a series
of array accesses. The first prefetch address will then be A3 = a2 + D,
where A3 is the predicted value of a3. Prefetching continues in this way until
the equality An = an is no longer true.

At this point, prefetching for instruction mi ends.

Reference Prediction Table

To implement this approach, it is necessary to store the previous address
used by a memory instruction along with the last detected stride, if there
has been one. It is clearly impossible to record the reference histories of
every memory instruction. Instead, a separate cache called the reference
prediction table (RPT) holds this information for most of the recently used
memory instructions. Table entries contain a memory instruction’s address,
the previous address accessed by the instruction, a stride value for entries
that have established a stride, and a field that records the entry’s current
state [6]. The table is indexed by the CPU’s program counter. When the
CPU executes memory instruction mi for the first time, it enters the instruction
in the RPT with its state set to initial. This shows that the RPT has not

95Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue Dec. 2011, Vol. 5

© 2011 Journal Anu Books Authors are responsible for any plagiarism issues.

initiated prefetching for this instruction. If mi is executed again before its
RPT entry has been evicted, the RPT calculates a stride value by subtracting
the instruction’s most recent address stored in the RPT from the current
address.

Integrating Hardware and Software Prefetching
Software prefetching relies exclusively on compile-time analysis to

schedule fetch instructions within the user program. Zheng and Torrellas [4]
suggest an integrated technique that enables prefetching for irregular data
structures. In contrast, the hardware techniques discussed thus far infer
prefetching opportunities at run-time without any compiler or processor
support. Noting that each of these approaches has its advantages, some
researchers have proposed mechanisms that combine elements of both
software and hardware prefetching. A special fetch instruction is provided
that prefetches the specified block into the cache and then sets the tag bit
and the value of the PD field of the cache entry holding the prefetchedblock
[9]. The first K blocks of a sequential reference stream are prefetched using
this instruction. When a tagged block, b, is demand fetched, the value in its

96

© 2011 Journal Anu Books Authors are responsible for any plagiarism issues.

Sneha Chhabra, Raman Maini

PD field, Kb, is added to the block address to calculate a prefetch address.
The PD field of the newly prefetched block is then set to Kb and the tag bit is
set. This insures that the appropriate value of K is propagated through the
reference stream. Prefetching for non-sequential reference patterns is
handled by ordinary fetch instructions. VanderWiel and Lilja [5] propose a
prefetch engine that is external to the processor. The engine is a general
processor that executes its own program to prefetch data for the CPU.
Through a shared second-level cache, a producer-consumer relationship
is established between the two processors in which the engine prefetches
new data blocks into the cache only after previously prefetched data have
been accessed by the compute processor. The processor also partially
directs the actions of the prefetch engine by writing control information to
memory-mapped registers within the prefetch engine’s support logic.

Conclusion
Data prefetching has been shown to be a very promising technique for

tolerating the large memory latencies common in shared-memory
multiprocessors. Once a prefetch mechanism has been specified, it is
natural to wish to compare it with other schemes. Both hardware and
software data prefetching schemes have been proposed and evaluated;
however, both types of prefetching have their shortcomings. Unfortunately,
a comparative evaluation of the various proposed prefetching techniques is
hindered by widely varying architectural assumptions and testing procedures.
Software prefetching handles both types of referencing patterns but
introduces instruction overhead. We propose an integrated hardware/
software prefetching scheme that incorporates the best aspects of both
forms of prefetching. Integrated schemes attempt to reduce instruction
overhead while still offering better prefetch coverage than pure hardware
techniques. These two facets are handled by the software support in our
integrated scheme; therefore, our hardware support is simpler than that of
other hardware prefetching schemes. However, in our scheme, most data
accesses can still be handled in hardware.

97Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue Dec. 2011, Vol. 5

© 2011 Journal Anu Books Authors are responsible for any plagiarism issues.

References

1. Gupta, A., Hennessy, J., Gharachorloo, K., Mowry, T. and Weber, W.-
D., “Comparative Evaluation of Latency Reducing and Tolerating
Techniques,” Proc. 18th International Symposium on Computer
Architecture, Toronto, Ont., Canada, May 1991, p. 254-263.

2. Smith, A.J., “Cache Memories,” Computing Surveys, Vol.14, No.3,
September 1982, p. 473-530.

3. F. Dahlgren, M. Dubois and P. Stenstrom, “Fixed and Adaptive Sequential
Prefetching in Shared-memory Multiprocessors,” Proc. International
Conference on Parallel Processing, St. Charles, IL, August 1993,
 p. I-56-63.

4. F. Dahlgren and P. Stenstrom, “Effectiveness of Hardware-based Stride
and Sequential Prefetching in Shared-memory Multiprocessors,” Proc.
First IEEE Symposium on High-Performance Computer Architecture,
Raleigh, NC, Jan. 1995, p. 68-77.

5. Oberlin, S., R. Kessler, S. Scott and G. Thorson, The Cray T3E
Architecture Overview, Cray Research Inc., Eagan, MN, 1996.

6. S. Palacharla and R.E. Kessler, “Evaluating Stream Buffers as a
Secondary Cache Replacement,” Proc. 21st International Symposium
on Computer Architecture, April 1994.

7. R.H Patterson and G.A. Gibson, “Exposing I/O concurrency with informed
prefetching,” Proc. Third International Conf. on Parallel and Distributed
Information Systems, Austin, TX, September 1994, p. 7-16.

* * * * *

